试图编写泡菜文件时找不到对象
我正在尝试使用随机矢量森林进行癌症检测。我正在尝试使用命令cickle.dump(forest,open(“ model.pkl”,“ wb”)
。但我收到名称错误
NameError Traceback (most recent call last)
c:\Users\hp\newtest\pcancer.ipynb Cell 6' in <cell line: 1>()
----> 1 pickle.dump(forest,open("model.pkl","wb"))
NameError: name 'forest' is not defined
这是我的源代码,用于检测:
import numpy as np
import pandas as pd
import warnings as wr
#Ignoring warnings
from sklearn.exceptions import UndefinedMetricWarning
wr.filterwarnings("ignore", category=UndefinedMetricWarning)
import pickle
df=pd.read_csv('Prostate_cancer_data.csv')
print(df.head(10))
print(df.shape)
print(df.isna().sum())
df=df.dropna(axis=1)#Drop the column with empty data
df=df.drop(['id'],axis=1)
#Encoding first column
from sklearn.preprocessing import LabelEncoder
labelencoder_X=LabelEncoder()
df.iloc[:,0]=labelencoder_X.fit_transform(df.iloc[:,0].values)
#Splitting data for dependence
X=df.iloc[:,1:].values
Y=df.iloc[:,0].values
#Train-Test split
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.25,random_state=1)
#Standard scaling
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X_train=sc.fit_transform(X_train)
X_test=sc.fit_transform(X_test)
from sklearn.ensemble import RandomForestClassifier
def models(X_train,Y_train):
#Random forest classifier
forest=RandomForestClassifier(n_estimators=10,criterion='entropy',random_state=0)
forest.fit(X_train,Y_train)
print("Random Forest:",forest.score(X_train,Y_train))
return forest
print("Accuracy")
model=models(X_train,Y_train)
I am trying to do cancer detection using Random Vector Forest. I am trying to make a pickle file by using the command pickle.dump(forest,open("model.pkl","wb")
.But I am getting a name error
NameError Traceback (most recent call last)
c:\Users\hp\newtest\pcancer.ipynb Cell 6' in <cell line: 1>()
----> 1 pickle.dump(forest,open("model.pkl","wb"))
NameError: name 'forest' is not defined
This is my source code for detection:
import numpy as np
import pandas as pd
import warnings as wr
#Ignoring warnings
from sklearn.exceptions import UndefinedMetricWarning
wr.filterwarnings("ignore", category=UndefinedMetricWarning)
import pickle
df=pd.read_csv('Prostate_cancer_data.csv')
print(df.head(10))
print(df.shape)
print(df.isna().sum())
df=df.dropna(axis=1)#Drop the column with empty data
df=df.drop(['id'],axis=1)
#Encoding first column
from sklearn.preprocessing import LabelEncoder
labelencoder_X=LabelEncoder()
df.iloc[:,0]=labelencoder_X.fit_transform(df.iloc[:,0].values)
#Splitting data for dependence
X=df.iloc[:,1:].values
Y=df.iloc[:,0].values
#Train-Test split
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.25,random_state=1)
#Standard scaling
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X_train=sc.fit_transform(X_train)
X_test=sc.fit_transform(X_test)
from sklearn.ensemble import RandomForestClassifier
def models(X_train,Y_train):
#Random forest classifier
forest=RandomForestClassifier(n_estimators=10,criterion='entropy',random_state=0)
forest.fit(X_train,Y_train)
print("Random Forest:",forest.score(X_train,Y_train))
return forest
print("Accuracy")
model=models(X_train,Y_train)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
代码的这一部分未按顺序缩进。因此,它是本地声明和行动作为递归电话
this part of code is not indented in order. so its a local declaration and action as a recursive call
代码的最后一部分中存在凹痕问题。这是正确的缩进代码,当您创建一个泡菜文件时,您将在其命名模型中返回森林,而不是在森林中编写模型对象
There is indentation problem in the last section of your code. This is correctly indented code and when you create a pickle file you'll write model object in it not the forest as forest is returned in object named model