Keras/TensorFlow中的自定义损失功能

发布于 2025-02-08 09:53:44 字数 1315 浏览 2 评论 0原文

我正在尝试创建一个无监督的神经网络,该网络可以建模此功能:F(x1,x2)= x1+x2^2。为此,我需要一个自定义损失功能。这是我所拥有的:

import keras
import numpy as np
import pandas as pd
import tensorflow as tf

def custom_loss(X1,X2):
    def loss(y_true,y_pred):
        # I don't have any values for y_true
        z = tf.math.add(X1,tf.math.multiply(X2,X2))
        return tf.math.square(tf.math.subtract(z,y_pred))
        # The "loss" should be [(X1+X2^2)-y_pred]^2
    return loss

df = pd.read_csv('inputs.csv')
INPUT = df.drop(columns=['OUTPUT']).astype(np.float32)
# "INPUT" contains the values for X1 and X2
X1 = df['X1'].astype(np.float32)
# "X1" contains the values for X1 only
X2 = df['X2'].astype(np.float32)
# "X2" contains the values for X2 only
y_true = df['OUTPUT'].astype(np.float32)
# I don't have a y_true. So I made an extra column full of zeros.

model = keras.models.Sequential()
model.add(keras.layers.Dense(20, activation='tanh', input_shape=(2,)))
model.add(keras.layers.Dense(20, activation='tanh'))
model.add(keras.layers.Dense(1, activation='tanh'))

model.compile(optimizer='adam', loss=custom_loss(X1, X2))
model.fit(INPUT, y_true, epochs=400)

test_data = np.array([0.5, 0.6])
print(model.predict(test_data.reshape(1, 2), batch_size=1))

如果代码正确,测试输出应为0.5+(0.6)^2 = 0.86,但完全关闭。我为我的编程差而道歉。我仍然没有经验。非常感谢您的任何帮助。

I am trying to create an unsupervised neural network that can model this function: f(x1,x2) = x1+x2^2. To do this, I need a custom loss function. Here is what I have:

import keras
import numpy as np
import pandas as pd
import tensorflow as tf

def custom_loss(X1,X2):
    def loss(y_true,y_pred):
        # I don't have any values for y_true
        z = tf.math.add(X1,tf.math.multiply(X2,X2))
        return tf.math.square(tf.math.subtract(z,y_pred))
        # The "loss" should be [(X1+X2^2)-y_pred]^2
    return loss

df = pd.read_csv('inputs.csv')
INPUT = df.drop(columns=['OUTPUT']).astype(np.float32)
# "INPUT" contains the values for X1 and X2
X1 = df['X1'].astype(np.float32)
# "X1" contains the values for X1 only
X2 = df['X2'].astype(np.float32)
# "X2" contains the values for X2 only
y_true = df['OUTPUT'].astype(np.float32)
# I don't have a y_true. So I made an extra column full of zeros.

model = keras.models.Sequential()
model.add(keras.layers.Dense(20, activation='tanh', input_shape=(2,)))
model.add(keras.layers.Dense(20, activation='tanh'))
model.add(keras.layers.Dense(1, activation='tanh'))

model.compile(optimizer='adam', loss=custom_loss(X1, X2))
model.fit(INPUT, y_true, epochs=400)

test_data = np.array([0.5, 0.6])
print(model.predict(test_data.reshape(1, 2), batch_size=1))

If the code was correct, the test output should be 0.5+(0.6)^2 = 0.86, but it is totally off. I apologize for my poor programming. I am still very inexperienced. Thank you so much for any help.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文