如何修改pytorch数据集__getItem__函数以返回10张图像的袋子?
我有一个目录,其中有多个图像分为文件夹。每个文件夹最多具有3000张图像。我想修改pytorch数据集 getItem 功能,以便它返回图像袋,每个袋中包含10张图像。
这是我到目前为止所拥有的:
transform = transforms.Compose([transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor()
])
dataset = datasets.ImageFolder('./../BCNB/patches/WSI_1', transform=transform)
data_loader = torch.utils.data.DataLoader(dataset, batch_size = 1)
我的数据加载器输出应该是[1、10、3、256、256]形状的张量。 任何输入都会非常有帮助!
非常感谢您!
I have a directory with multiple images separated into folders. Each folder has up to 3000 images. I would like to modify the pytorch dataset getitem function so that it returns bags of images, where each bag contains 10 images.
Here is what I have so far:
transform = transforms.Compose([transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor()
])
dataset = datasets.ImageFolder('./../BCNB/patches/WSI_1', transform=transform)
data_loader = torch.utils.data.DataLoader(dataset, batch_size = 1)
My output of DataLoader should be a tensor with a shape of [1, 10, 3, 256, 256].
Any input would be very helpful!
Thank you very much in advance!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
为什么需要“ 10张图像的袋子”?如果您需要它们作为 mini批次进行培训 - 请勿更改
数据集
,而是使用dataLoader
为此。DataLoader
采用数据集并为您进行“批处理”。另外,您可以超载
__ getItem __
方法,并实现自己的返回10张图像而不仅仅是一个。Why do you need "bags of 10 images"? If you need them as mini batches for training -- don't change the
Dataset
, but use aDataLoader
for that. ADataLoader
takes a dataset and does the "batching" for you.Alternatively, you can overload the
__getitem__
method and implement your own that returns 10 images instead of just one.