R:NLME软件包中具有自相关错误的混合效应模型:如何检查模型ARMA假设?
我正在使用包装nlme:
model <- lme(y ~ x, random = ~ 1 | group, data = data, correlation = corARMA(form = ~ x | group, p=1, q=1)
比较AIC值的LME模型,其中R在R中的以下结构,该模型似乎与没有自相关残差的模型更好。但是,如何检查有关ARMA模型的模型假设?最重要的是,如何检查ARMA模型的残差是否不再相关?
I am setting up a LME model with the following structure in R, using the package nlme:
model <- lme(y ~ x, random = ~ 1 | group, data = data, correlation = corARMA(form = ~ x | group, p=1, q=1)
Comparing AIC values, this model seems to compare better to a model without autocorrelated residuals. But how do I check my model assumptions regarding the ARMA model? Most importantly, how do I check whether the residuals of ARMA model are not correlated anymore?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您需要检查标准化/归一化残差中是否有自动相关。
理想情况下,它应该看起来像白噪声。
You need to check out if there is auto-correlation in standardized/normalized residuals.
Ideally it should look like white noise.