训练TensorFlow以查找数字集之间的模式

发布于 2025-02-07 11:17:22 字数 1355 浏览 1 评论 0原文

我正在尝试训练一个AI,鉴于一组90个可能的数字,匹配了5个生成的数字(没有随机生成的重复和数字)。 这是代码:

from numpy import test
import tensorflow as tf
import click
import pandas as pd
from sklearn.model_selection import train_test_split
from itertools import repeat
insert = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90] for i in repeat(None, 33785)]
results = pd.read_csv("datini.csv")
del results['DATA']
del results['LUOGO']
results.drop(columns=results.columns[0], axis=1, inplace=True)
insert_train, insert_test, results_train, results_test = train_test_split(insert, results, test_size=0.2)

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Dense(256, input_shape=insert_train.shape))
model.add(tf.keras.layers.Dense(256))
model.add(tf.keras.layers.Dense(5))

model.compile(optimizer='adam', loss='CategoricalCrossentropy', metrics=['accuracy'])

model.fit(insert_train, results_train, epochs=200)
model.evaluate(insert_test, results_test)

它给出了此错误,我不知道如何在不创建另一个数据集的情况下插入“固定数据”。

attributeError:'list'对象没有属性'形状'

I'm trying to train an AI that, given a set of 90 possible numbers, matches 5 generated numbers(no repetitions and numbers are not generated randomly).
This is the code:

from numpy import test
import tensorflow as tf
import click
import pandas as pd
from sklearn.model_selection import train_test_split
from itertools import repeat
insert = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90] for i in repeat(None, 33785)]
results = pd.read_csv("datini.csv")
del results['DATA']
del results['LUOGO']
results.drop(columns=results.columns[0], axis=1, inplace=True)
insert_train, insert_test, results_train, results_test = train_test_split(insert, results, test_size=0.2)

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Dense(256, input_shape=insert_train.shape))
model.add(tf.keras.layers.Dense(256))
model.add(tf.keras.layers.Dense(5))

model.compile(optimizer='adam', loss='CategoricalCrossentropy', metrics=['accuracy'])

model.fit(insert_train, results_train, epochs=200)
model.evaluate(insert_test, results_test)

It gives this error and I don't know how to insert the "fixed data" without creating another dataset.

AttributeError: 'list' object has no attribute 'shape'

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

萌无敌 2025-02-14 11:17:22

错误是哪一行?

model.add(tf.keras.layers.Dense(256, input_shape=insert_train.shape))

如果在这里,则insert_train.shape是列表。将其变成一个数阵列,以便您可以使用。

insert_train = np.array(insert_train)

Which line is the error at?

model.add(tf.keras.layers.Dense(256, input_shape=insert_train.shape))

if here, then insert_train.shape is a list. make it into a numpy array so that you can use .shape

insert_train = np.array(insert_train)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文