有没有办法可视化从WAV2VEC 2.0获得的嵌入?
我想从头开始训练Word2Vec 2.0模型,但我对该领域有些新。至关重要的是,我想使用大型非人类语音(即鲸类声音)进行训练,以捕获基础结构。
一旦执行了预训练,是否可以以类似的方式可视化模型创建的嵌入,以便在使用EG CNN时如何在图像处理中可视化的潜在特征?还是说明太抽象而无法映射到频谱图?
我想做的是查看网络作为语音单位学习的功能。
事先感谢您的帮助!
I'm looking to train a word2vec 2.0 model from scratch, but I am a bit new to the field. Crucially, I would like to train it using a large dataset of non-human speech (i.e. cetacean sounds) in order to capture the underlying structure.
Once the pre-training is performed, is it possible to visualize the embeddings the model creates, in a similar way to how latent features are visualized in image processing when using e.g. CNNs? Or are the representations too abstract to be mapped to a spectrogram?
What I would like to do is to see what features the network is learning as the units of speech.
Thanks in advance for the help!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论