离群值检测
我生成了这个示例中的离群
。
值 尝试了Iforest,OCSVM和其他几个人
,以及在与那些无法重现显示出最佳结果的OCSVM之后(第三次图),我可能丢失了一些参数
检测此类异常值的最佳算法是什么?
数据集
index day interval device nv_zscore c_faulty c_normal
0 0 0 0 -1.308137 0 1
1 0 1 0 -1.330926 0 1
2 0 2 0 -1.285348 0 1
3 0 3 0 -1.253444 0 1
4 0 4 0 -1.194192 0 1
... ... ... ... ... ... ...
67195 6 19 9 0.882879 1 0
67196 6 20 9 1.544848 1 0
67197 6 21 9 0.147239 1 0
67198 6 22 9 0.674702 1 0
67199 6 23 9 -0.306257 1 0
The outliers in this example was generated by me
The graph bellow represents the readings from one device, in the same day over multiple weeks, normal values in purple, red values are outliers, which means values that stands out from the normal pattern
I have already tried iforest, ocsvm and few others
And after messing around with those i was unable to reproduce the ocsvm that showed the best result (3rd plot), i might have lost some parameters
What would be the best algorithm for detecting such outliers?
Dataset
index day interval device nv_zscore c_faulty c_normal
0 0 0 0 -1.308137 0 1
1 0 1 0 -1.330926 0 1
2 0 2 0 -1.285348 0 1
3 0 3 0 -1.253444 0 1
4 0 4 0 -1.194192 0 1
... ... ... ... ... ... ...
67195 6 19 9 0.882879 1 0
67196 6 20 9 1.544848 1 0
67197 6 21 9 0.147239 1 0
67198 6 22 9 0.674702 1 0
67199 6 23 9 -0.306257 1 0
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论