火车测试按特定班级计数分开

发布于 2025-02-07 05:27:21 字数 1574 浏览 4 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

陪你搞怪i 2025-02-14 05:27:21

您不应因失衡而影响火车测试分裂。火车测试拆分必须对应于实际测试分布。如果您的问题不平衡 - 您的测试套装也应该是!

您可以更改的是是您使用和/或培训制度的度量,例如:

这两种技术在技术上都将以同样重要的方式对待课程的效果相同,但是您不必以不同的方式“拆分”。

而且,如果您真的坚持以一种奇怪的方式拆分数据,那就可以手工

import numpy as np

def odd_split(X, y, minority_class=1, minority_test_size=0.1):
  minority_indices = np.where(y==minority_class)[0]
  majority_indices = np.where(y!=minority_class)[0]
    
  n = max(1, int(minority_test_size* len(minority_indices)))
  selected = np.random.choice(range(len(minority_indices)), n, replace=False)
  test_minority_indices = minority_indices[selected]
  assert (y[test_minority_indices] == minority_class).all()
  
  selected = np.random.choice(range(len(majority_indices)), n, replace=False)
  test_majority_indices = majority_indices[selected]
  assert (y[test_majority_indices ] != minority_class).all()
  
  test_indices = np.concatenate((test_minority_indices, test_majority_indices))
  train_indices = np.array([i for i in range(len(y)) if i not in set(test_indices)])
  
  return X[train_indices], y[train_indices], X[test_indices], y[test_indices]
  

from collections import Counter  
X = np.random.normal(size=(1000, 2))  
y = np.random.choice([0, 1], p=[0.9, 0.1], size=1000)
print('Whole', Counter(y))

X_train, y_train, X_test, y_test = odd_split(X, y)
print('Train', Counter(y_train))
print('Test', Counter(y_test))

Whole Counter({0: 886, 1: 114})
Train Counter({0: 875, 1: 103})
Test Counter({1: 11, 0: 11})

You shouldn't affect train-test split because of imbalance. Train-test split has to correspond to actual testing distribution. If your problem is imbalanced - so should your test set be!

What you can change though is a metric you use and/or training regime, e.g.:

Both these will technically same the same effect of treating classes in an equally important way, but you do not have to "split things" differently.

And if you really insist on splitting data in such an odd way just do it by hand

import numpy as np

def odd_split(X, y, minority_class=1, minority_test_size=0.1):
  minority_indices = np.where(y==minority_class)[0]
  majority_indices = np.where(y!=minority_class)[0]
    
  n = max(1, int(minority_test_size* len(minority_indices)))
  selected = np.random.choice(range(len(minority_indices)), n, replace=False)
  test_minority_indices = minority_indices[selected]
  assert (y[test_minority_indices] == minority_class).all()
  
  selected = np.random.choice(range(len(majority_indices)), n, replace=False)
  test_majority_indices = majority_indices[selected]
  assert (y[test_majority_indices ] != minority_class).all()
  
  test_indices = np.concatenate((test_minority_indices, test_majority_indices))
  train_indices = np.array([i for i in range(len(y)) if i not in set(test_indices)])
  
  return X[train_indices], y[train_indices], X[test_indices], y[test_indices]
  

from collections import Counter  
X = np.random.normal(size=(1000, 2))  
y = np.random.choice([0, 1], p=[0.9, 0.1], size=1000)
print('Whole', Counter(y))

X_train, y_train, X_test, y_test = odd_split(X, y)
print('Train', Counter(y_train))
print('Test', Counter(y_test))

Which gives

Whole Counter({0: 886, 1: 114})
Train Counter({0: 875, 1: 103})
Test Counter({1: 11, 0: 11})
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文