如何仅使用1个标签选择正确的对象检测模型的图像?

发布于 2025-02-07 01:23:48 字数 876 浏览 1 评论 0原文

用户酶:我正在尝试提取屏幕截图的某些部分,该部分是从游戏(带有TF对象检测模型)中取出的,并在此部分中提取文本(游戏中使用的字体自定义模型)。

我已经训练了基于SSD Mobilenet V2的自定义模型,并且对象检测可以很好地运行,但是有时界框关闭了。我搜索了选择合适的图像和适量训练自定义模型的金额,但找不到正确的提示。

我尝试提取以下内容(被红色包围):

环境可以改变:

  • 游戏的分辨率可以不同(1920x1080,whqd等),
  • 盒子中的文本并不总是

与我接受了120张自行制作图像(1920x1080)训练(训练10%的90%) %用于测试)(所有这些图像中的屏幕截图),正如我提到的,结果还不错。有时,检测区域关闭(切割盒子的内容或包含周围盒子周围的很多区域)。

也许有人可以帮助我/回答以下问题:

  1. 更大的培训数据集可以提高准确性吗?
  2. 创建培训数据时,我还应该考虑不同的决议吗?
  3. 只能在没有游戏屏幕截图的情况下只喂盒子,这是有意义的吗?还是我应该混合整个游戏的屏幕截图和仅框屏幕截图?

预先感谢您! :)

UseCase: I'm trying to extract certain parts of a screenshot which is taken from a game (with a tf object detection model) and extract the text within this part (custom model for the font used in the game).

I have trained a custom model based on SSD Mobilenet V2 and the object detection works quite okish, but sometimes the bounding box is off. I googled about selecting the right images and the right amount for training the custom model, but I couldn't find a good hint in the right direction.

I try to extract the following (surrounded by red):
Extraction

The environmen can change:

  • Resolution of the game can be different (1920x1080, WHQD etc.)
  • Text in the box is not always the same

I have trained with 120 self made images (1920x1080) (90% for training 10% for test) (all of these images where a screenshot of the game) and as I mentioned the results are okish. Sometimes the detected area is off (cutting the content of the box or including a lot area of the box surroundings).

Maybe someone can help me/answering the following questions:

  1. Could a bigger training dataset increase the accuracy?
  2. Should I also take different resolutions into account when creating the training data?
  3. Would it make sense to feed only the boxes without the rest of the game screenshot into the training? Or should I mix screenshots of the whole game and only box screenshots?
    Box only

Thank you in advance ! :)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文