RuntimeRorr:对于打开的2D输入,HX和CX也应为2-D,但得到(3-D,3-D)张量
嘿,我的LSTM有一些问题。我有6个功能,我一次在LSTM中发送所有数据(29002行)(这是个好主意吗?)。
的输入是大小:
训练形状火炬。
我 ,1])
我的模型:
class LSTM(nn.Module):
def __init__(self, hidden_dim_LSTM, num_layers_LSTM, hidden1, drop):
super(LSTM, self).__init__()
self.hidden_dim_LSTM = hidden_dim_LSTM
self.num_layers_LSTM = num_layers_LSTM
self.hidden1=hidden1
self.drop=drop
final_output_dim = 1
#self.lstm = nn.LSTM(self.input_dim, self.hidden_dim, self.num_layers, batch_first=True)
self.lstm = nn.LSTM(6, hidden_size=hidden_dim_LSTM, num_layers=num_layers_LSTM, batch_first=True)
self.fc1 = nn.Linear(in_features=hidden_dim_LSTM, out_features=hidden1)
self.drop = nn.Dropout(drop)
self.fc2 = nn.Linear(in_features=hidden1, out_features=final_output_dim)
def forward(self, x):
h_0 = Variable(torch.zeros(self.num_layers_LSTM, x.size(0), self.hidden_dim_LSTM)).requires_grad_().to(device) #hidden state
c_0 = Variable(torch.zeros(self.num_layers_LSTM, x.size(0), self.hidden_dim_LSTM)).requires_grad_().to(device) #internal state
# Propagate input through LSTM
output, (hn, cn) = self.lstm(x, (h_0, c_0)) #lstm with input, hidden, and internal state
hn = hn.view(-1, self.hidden_dim_LSTM) #reshaping the data for Dense layer next
out = F.relu(hn)
out = self.fc1(out)
out = self.drop(out)
out = torch.relu(out)
#out = self.drop(out)
out = self.fc2(out)
return out
当我开始培训时,我会收到此错误: RuntimeRorr:对于打开的2D输入,HX和CX也应为2-D,但得到(3-D,3-D)张量 在线:输出,(HN,CN)= self.lstm(x,(h_0,c_0))
我都非常感谢每一个帮助!
hey I have some problems with my LSTM. I have 6 features and I´m sending all my data (29002 rows) in the LSTM at once (is this a good idea?).
My Input is of size:
Training Shape torch.Size([290002, 1, 6]) torch.Size([290002, 1])
Testing Shape torch.Size([74998, 1, 6]) torch.Size([74998, 1])
my model:
class LSTM(nn.Module):
def __init__(self, hidden_dim_LSTM, num_layers_LSTM, hidden1, drop):
super(LSTM, self).__init__()
self.hidden_dim_LSTM = hidden_dim_LSTM
self.num_layers_LSTM = num_layers_LSTM
self.hidden1=hidden1
self.drop=drop
final_output_dim = 1
#self.lstm = nn.LSTM(self.input_dim, self.hidden_dim, self.num_layers, batch_first=True)
self.lstm = nn.LSTM(6, hidden_size=hidden_dim_LSTM, num_layers=num_layers_LSTM, batch_first=True)
self.fc1 = nn.Linear(in_features=hidden_dim_LSTM, out_features=hidden1)
self.drop = nn.Dropout(drop)
self.fc2 = nn.Linear(in_features=hidden1, out_features=final_output_dim)
def forward(self, x):
h_0 = Variable(torch.zeros(self.num_layers_LSTM, x.size(0), self.hidden_dim_LSTM)).requires_grad_().to(device) #hidden state
c_0 = Variable(torch.zeros(self.num_layers_LSTM, x.size(0), self.hidden_dim_LSTM)).requires_grad_().to(device) #internal state
# Propagate input through LSTM
output, (hn, cn) = self.lstm(x, (h_0, c_0)) #lstm with input, hidden, and internal state
hn = hn.view(-1, self.hidden_dim_LSTM) #reshaping the data for Dense layer next
out = F.relu(hn)
out = self.fc1(out)
out = self.drop(out)
out = torch.relu(out)
#out = self.drop(out)
out = self.fc2(out)
return out
When I start the training I get this Error:
RuntimeError: For unbatched 2-D input, hx and cx should also be 2-D but got (3-D, 3-D) tensors
at Line: output, (hn, cn) = self.lstm(x, (h_0, c_0))
I'm grateful for every help!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论