我如何使用此数据集“ MC1”绘制KNN决策边界数字?

发布于 2025-02-06 11:07:05 字数 825 浏览 3 评论 0原文

如何使用此数据集“ MC1”来绘制KNN决策边界图? 这是我的代码,我尝试使用ILOC和LOC,但没有工作

from sklearn.model_selection import train_test_split as tts
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from yellowbrick.contrib.classifier import DecisionViz
from yellowbrick.features import RadViz
from yellowbrick.style import set_palette
set_palette('flatui')

data_set = pd.read_csv('MC1.csv')

X, y = data_set
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = tts(X, y, test_size=.4, random_state=42)
visualizer = RadViz(size=(500, 400))
viz = DecisionViz(
    KNeighborsClassifier(5), title="Nearest Neighbors",classes=['Y', 'N']
)

viz.fit(X_train, y_train)
viz.draw(X_test, y_test)
viz.show()

How can I use this dataset "MC1" to plot a KNN decision boundary figure?
Here is my code, I have tried to use iloc and loc but did not work

from sklearn.model_selection import train_test_split as tts
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from yellowbrick.contrib.classifier import DecisionViz
from yellowbrick.features import RadViz
from yellowbrick.style import set_palette
set_palette('flatui')

data_set = pd.read_csv('MC1.csv')

X, y = data_set
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = tts(X, y, test_size=.4, random_state=42)
visualizer = RadViz(size=(500, 400))
viz = DecisionViz(
    KNeighborsClassifier(5), title="Nearest Neighbors",classes=['Y', 'N']
)

viz.fit(X_train, y_train)
viz.draw(X_test, y_test)
viz.show()

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文