我如何使用此数据集“ MC1”绘制KNN决策边界数字?
如何使用此数据集“ MC1”来绘制KNN决策边界图? 这是我的代码,我尝试使用ILOC和LOC,但没有工作
from sklearn.model_selection import train_test_split as tts
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from yellowbrick.contrib.classifier import DecisionViz
from yellowbrick.features import RadViz
from yellowbrick.style import set_palette
set_palette('flatui')
data_set = pd.read_csv('MC1.csv')
X, y = data_set
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = tts(X, y, test_size=.4, random_state=42)
visualizer = RadViz(size=(500, 400))
viz = DecisionViz(
KNeighborsClassifier(5), title="Nearest Neighbors",classes=['Y', 'N']
)
viz.fit(X_train, y_train)
viz.draw(X_test, y_test)
viz.show()
How can I use this dataset "MC1" to plot a KNN decision boundary figure?
Here is my code, I have tried to use iloc and loc but did not work
from sklearn.model_selection import train_test_split as tts
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from yellowbrick.contrib.classifier import DecisionViz
from yellowbrick.features import RadViz
from yellowbrick.style import set_palette
set_palette('flatui')
data_set = pd.read_csv('MC1.csv')
X, y = data_set
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = tts(X, y, test_size=.4, random_state=42)
visualizer = RadViz(size=(500, 400))
viz = DecisionViz(
KNeighborsClassifier(5), title="Nearest Neighbors",classes=['Y', 'N']
)
viz.fit(X_train, y_train)
viz.draw(X_test, y_test)
viz.show()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论