如何使用Min,Max,Max,Mean和Standard偏差在Python中创建分布?
如标题所述,我正在尝试在Python中创建一个用于蒙特卡洛模拟中的分布。我有最小值和最大值,以及最可能的值和标准偏差。有没有办法使用所有这些值对分布进行建模?
到目前为止,我发现的最接近的方法是将其拆分,以便我创建这样的分布:
GCH = np.arange(GCHmin, GCHmax, 0.0001)
GCH = np.random.normal(GCHavg, GCHstdv, num_reps)
此方法确实有效,但是我觉得必须有一种更好的方法来完成它试图在第50个百分位数中重新创建,但是在第10%和第90个百分位数中,与所需结果有所不同。
任何帮助将不胜感激。
As the title states, I am trying to create a distribution in Python to be used in Monte Carlo simulations. I have the Minimum and Maximum values, as well as the most likely value and the Standard Deviation. Is there a way to model the distribution using all of these values?
The closest method I have found so far is splitting it so that I create the distribution like so:
GCH = np.arange(GCHmin, GCHmax, 0.0001)
GCH = np.random.normal(GCHavg, GCHstdv, num_reps)
This method does work, but I feel like there must be a better way to do it, as doing the simulation this way matches the results I am trying to recreate at the 50th percentile, but at the 10th and 90th percentiles there is a bit of difference from the desired result.
Any help is greatly appreciated.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论