熊猫 - 每月重新采样每月序列到小时
假设我有一个具有两个索引级别的多指数pandas数据框架:month_begin and month_end,
import pandas as pd
multi_index = pd.MultiIndex.from_tuples([("2022-03-01", "2022-03-31"),
("2022-04-01", "2022-04-30"),
("2022-05-01", "2022-05-31"),
("2022-06-01", "2022-06-30")])
multi_index.names = ['month_begin', 'month_end']
df = pd.DataFrame(np.random.rand(4,100), index=multi_index)
df
0 1 ... 98 99
month_begin month_end ...
2022-03-01 2022-03-31 0.322032 0.205307 ... 0.975128 0.673460
2022-04-01 2022-04-30 0.113813 0.278981 ... 0.951049 0.090765
2022-05-01 2022-05-31 0.777918 0.842734 ... 0.667831 0.274189
2022-06-01 2022-06-30 0.221407 0.555711 ... 0.745158 0.648246
我想将数据重新采样以在相应月份的每个小时内一个月内的一个月内具有值:
0 1 ... 98 99
...
2022-03-01 00:00 0.322032 0.205307 ... 0.975128 0.673460
2022-03-01 01:00 0.322032 0.205307 ... 0.975128 0.673460
2022-03-01 02:00 0.322032 0.205307 ... 0.975128 0.673460
...
2022-06-30 22:00 0.221407 0.555711 ... 0.745158 0.648246
2022-06-30 23:00 0.221407 0.555711 ... 0.745158 0.648246
我知道我可以使用resample( )
,但我在为此而苦苦挣扎。有人有线索吗?
Suppose I have a multi-index Pandas data frame with two index levels: month_begin and month_end
import pandas as pd
multi_index = pd.MultiIndex.from_tuples([("2022-03-01", "2022-03-31"),
("2022-04-01", "2022-04-30"),
("2022-05-01", "2022-05-31"),
("2022-06-01", "2022-06-30")])
multi_index.names = ['month_begin', 'month_end']
df = pd.DataFrame(np.random.rand(4,100), index=multi_index)
df
0 1 ... 98 99
month_begin month_end ...
2022-03-01 2022-03-31 0.322032 0.205307 ... 0.975128 0.673460
2022-04-01 2022-04-30 0.113813 0.278981 ... 0.951049 0.090765
2022-05-01 2022-05-31 0.777918 0.842734 ... 0.667831 0.274189
2022-06-01 2022-06-30 0.221407 0.555711 ... 0.745158 0.648246
I would like to resample the data to have the value in a month at every hour in the respective month:
0 1 ... 98 99
...
2022-03-01 00:00 0.322032 0.205307 ... 0.975128 0.673460
2022-03-01 01:00 0.322032 0.205307 ... 0.975128 0.673460
2022-03-01 02:00 0.322032 0.205307 ... 0.975128 0.673460
...
2022-06-30 22:00 0.221407 0.555711 ... 0.745158 0.648246
2022-06-30 23:00 0.221407 0.555711 ... 0.745158 0.648246
I know I can use resample()
, but I am struggeling with how to do this. Does anybody have a clue?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
iiuc,使用list_compherension尝试使用 pd.date_range :
输出:输出:
IIUC, try this using list_comprehension and
explode
withpd.date_range
:Output: