计算两个不同表与不同结构的相关性
我有两个表格,每个日期包含一个值'num1'的列,另一个包含一个值每个名称'num2'的表。我有兴趣计算每个名称的“ num2”值和'num1'之间的相关性,但是我不确定我是否需要将“ data2'表”分解为每个名称的不同表,或者如果有一个干净的方法来做到这一点。
data1 = {'date': ['2022-01-03', '2022-01-04', '2022-01-05'], 'num1': ['.024', '.035', '.04']}
data2 = {'date': ['2022-01-03', '2022-01-03', '2022-01-03', '2022-01-04', '2022-01-04', '2022-01-04', '2022-01-05','2022-01-05','2022-01-05'], 'name': ['name1', 'name2', 'name3', 'name1', 'name2', 'name3', 'name1', 'name2', 'name3'], 'num2':['20','200','149','36','174','400','45','100','12']}
data1 = pd.DataFrame(data1).set_index('date')
data2 = pd.DataFrame(data2).set_index('date')
print(data1)
print(data2)
是否有一种方法可以计算每个名称的NUM1和NUM2之间的相关性,而无需大量操纵这些表?
I have two tables, on containing a column of one value 'num1' per date, and another containing one value per name 'num2' per date. I'm interested in calculating the correlation between each name's 'num2' value and 'num1', but I'm unsure of whether or not I need to break the 'data2' table up into distinct tables for each name, or if there's a clean way to do this.
data1 = {'date': ['2022-01-03', '2022-01-04', '2022-01-05'], 'num1': ['.024', '.035', '.04']}
data2 = {'date': ['2022-01-03', '2022-01-03', '2022-01-03', '2022-01-04', '2022-01-04', '2022-01-04', '2022-01-05','2022-01-05','2022-01-05'], 'name': ['name1', 'name2', 'name3', 'name1', 'name2', 'name3', 'name1', 'name2', 'name3'], 'num2':['20','200','149','36','174','400','45','100','12']}
data1 = pd.DataFrame(data1).set_index('date')
data2 = pd.DataFrame(data2).set_index('date')
print(data1)
print(data2)
Is there a way to calculate correlations between num1 and num2 for each name without manipulating these tables heavily?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以使用 确保具有数值并加入dataframes之后:
输出:
You can use
groupby.corr
after ensuring having numerical values and joining the dataframes:output: