批量尺寸以避免过度拟合
我已经使用XLM-RobertaForeSececeCecrification编写了用于二进制文本分类的代码。我的train_dataset构成了8.000多个数据。对于训练,我使用了批量尺寸= 32。文本尚未清理太多(我删除了诉讼,数字,小写,超链接,主题标签,带有2个或更少字母的单词,带2个或更少字母的单词,带有2个或更少的字母的单词,Envericon的单词,Emoticon),但是我之后我变得过于适应只有10个时代。我的问题是,如果我增加了批处理大小,则有可能“避免”过度拟合吗?
I have written code for binary text classification using XLM-RoBERTaForSequenceClassification. My train_dataset is made up over 8.000 data. For training I have used a batch size=32. The text hasn't been cleaned too much (I removed tickers, number, lowercase, hyperlinks, hashtags, words with 2 or fewer letters, words with 2 or fewer letters, words with 2 or fewer letters, emoticon) but I get overfitting after only 10 epochs. My question is, if I increase the batch size it is possible to "avoid" overfitting?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论