mask rcnn无法识别对象彼此太近
我一直在尝试训练Mask RCNN模型,以识别堆栈中的单个扑克芯片。无论我更改什么属性,最终结果看起来都如下图。我猜想问题是,这些对象彼此过于近,无法进行适当的检测。我可以尝试更改的Mask RCCN或我的培训模型的其他模型或属性吗?
I have been trying to train a Mask RCNN model to identify individual poker chips in a stack. No matter what property I change, the end results look like the following image. I was guessing the issue is that the objects are too close to each other for the proper detection. Is there any alternative model or property of mask RCCN or my training model I could possibly try to change?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
蒙版RCNN对每个对象进行边界框预测和实例分割。如前所述在这里,
因此,请使用 repo 您的标记数据是正确的(早期i写道标签是错误的)。
对于Mask-RCNN而言,您的任务似乎并不难,因此我想您应该使用较大的数据集 +数据增强来获得更好的结果。
Mask RCNN makes bounding box predictions and instance segmentation of an object in each of them. As mentioned here,
So using that repo your labeled data is correct (earlier I wrote that the labelling is wrong).
Your task does not seem too difficult for Mask-RCNN, so I guess you should use larger dataset + data augmentations to get better results.