LSTM准确性低的预测

发布于 2025-02-04 20:27:15 字数 854 浏览 4 评论 0原文

我为此预测使用了LSTM模型。但是准确性很低。我该如何解决此问题?

from keras.layers import Dropout
from keras.layers import Bidirectional
model=Sequential()
model.add(LSTM(50,activation='relu',return_sequences=True,input_shape=(look_back,1)))
model.add(LSTM(50, activation='relu', return_sequences=True))
model.add(LSTM(50, activation='relu', return_sequences=True))
model.add(LSTM(50, activation='sigmoid', return_sequences=False))
model.add(Dense(50))
model.add(Dense(50))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(optimizer='adam',loss='mean_squared_error',metrics=['accuracy'])
model.optimizer.learning_rate = 0.0001

测试和火车预测图

epochs

I used an LSTM model for this prediction. But the accuracy is very low. How could I fix this issue?

from keras.layers import Dropout
from keras.layers import Bidirectional
model=Sequential()
model.add(LSTM(50,activation='relu',return_sequences=True,input_shape=(look_back,1)))
model.add(LSTM(50, activation='relu', return_sequences=True))
model.add(LSTM(50, activation='relu', return_sequences=True))
model.add(LSTM(50, activation='sigmoid', return_sequences=False))
model.add(Dense(50))
model.add(Dense(50))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(optimizer='adam',loss='mean_squared_error',metrics=['accuracy'])
model.optimizer.learning_rate = 0.0001

Test and Train Prediction Plot

Epochs

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

Oo萌小芽oO 2025-02-11 20:27:15

您的结构看起来正确。尝试我的代码。

来自keras.models导入顺序
来自keras.layers导入LSTM,密集,辍学,双向

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
#from keras.utils import plot_model
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from keras.layers.merge import Concatenate
import matplotlib.gridspec as gridspec

import random
import scikitplot as skplot
import datetime
from datetime import date
from pandas_datareader import data as pdr

def create_dataset(dataset, look_back=3):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i:(i+look_back)]
        dataX.append(a)
        dataY.append(dataset[i + look_back])
    return np.array(dataX), np.array(dataY)

COLUMNS=['your_data_column']
dataset=df[COLUMNS]
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(np.array(dataset).reshape(-1,1))

train_size = int(len(dataset) * 0.60)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size], dataset[train_size:len(dataset)]

look_back=3
trainX=[]
testX=[]
y_train=[]
n_future = 1
features=2
timeSteps=4

model = Sequential()

model.add(Bidirectional(LSTM(units=50, return_sequences=True, 
                             input_shape=(X_train.shape[1], 1))))

model.add(LSTM(units= 50, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units= 50, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units= 50))
model.add(Dropout(0.2))
model.add(Dense(units = n_future))

model.compile(optimizer="adam", loss="mean_squared_error", metrics=["acc"])

your structure seems correct. try my code.

from keras.models import Sequential
from keras.layers import LSTM, Dense,Dropout, Bidirectional

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
#from keras.utils import plot_model
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from keras.layers.merge import Concatenate
import matplotlib.gridspec as gridspec

import random
import scikitplot as skplot
import datetime
from datetime import date
from pandas_datareader import data as pdr

def create_dataset(dataset, look_back=3):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i:(i+look_back)]
        dataX.append(a)
        dataY.append(dataset[i + look_back])
    return np.array(dataX), np.array(dataY)

COLUMNS=['your_data_column']
dataset=df[COLUMNS]
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(np.array(dataset).reshape(-1,1))

train_size = int(len(dataset) * 0.60)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size], dataset[train_size:len(dataset)]

look_back=3
trainX=[]
testX=[]
y_train=[]
n_future = 1
features=2
timeSteps=4

model = Sequential()

model.add(Bidirectional(LSTM(units=50, return_sequences=True, 
                             input_shape=(X_train.shape[1], 1))))

model.add(LSTM(units= 50, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units= 50, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units= 50))
model.add(Dropout(0.2))
model.add(Dense(units = n_future))

model.compile(optimizer="adam", loss="mean_squared_error", metrics=["acc"])
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文