r lavaan中的CFA:用命令fitmeasures()的拟合度措施的不同结果与摘要
我正在计算具有以下模型的验证性因素分析:
library(lavaan)
CFA <- "
A =~ BK01_01_z+BK03_01_z+ BK03_03_z+ BK03_04_z+BK03_05_z+ BK03_07_z+ BK03_08_z+ BK05_01_z+BK05_02_z+ BK05_03_z+ BK05_04_z
B=~GK04_01_z + GK04_02_z+ GK04_03_z+GK04_04_z+GK04_05_z
C =~ GS09_01_z+GS09_02_z
Z=~A+B+C
"
fit <- cfa(CFA, data = df_clean, estimator ="WLSMV",
ordered = c("GS09_01_z",
"GS09_02_z"))
如您所见,有两个序数(二进制)变量应该加载到一个因素上。数据是非正常的也可能重要的。
当我现在查看结果时,我会为不同的命令获得不同的结果。
与:
summary(fit, fit.measures=TRUE)
我得到RMSEA = 0.069; CFI = 0.663; TLI = 0.609
with:
fitmeasures(fit, c("cfi","rmsea","srmr","tli"))
这些是结果:
CFI = 0.964; RMSEA = 0.041; SRMR = 0.060; TLI = 0.958
我试图搜索我的问题,但是我找不到为什么?也许有人遇到了类似的问题?
I'm calculating a confirmatory factor analysis with the following model:
library(lavaan)
CFA <- "
A =~ BK01_01_z+BK03_01_z+ BK03_03_z+ BK03_04_z+BK03_05_z+ BK03_07_z+ BK03_08_z+ BK05_01_z+BK05_02_z+ BK05_03_z+ BK05_04_z
B=~GK04_01_z + GK04_02_z+ GK04_03_z+GK04_04_z+GK04_05_z
C =~ GS09_01_z+GS09_02_z
Z=~A+B+C
"
fit <- cfa(CFA, data = df_clean, estimator ="WLSMV",
ordered = c("GS09_01_z",
"GS09_02_z"))
As you can see, there are two ordinal (binary) variables that are supposed to load onto one factor. It may also be important that the data is non-normal.
When I'm looking at the results now, I'm getting different results for different commands.
With:
summary(fit, fit.measures=TRUE)
I'm getting RMSEA = 0.069; CFI = 0.663; TLI = 0.609
with:
fitmeasures(fit, c("cfi","rmsea","srmr","tli"))
these are the results:
cfi = 0.964; rmsea = 0.041; srmr = 0.060; tli = 0.958
I've tried to search for my problem, but I couldn't find out why? Maybe someone has encountered a similar issue?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可能会获得标准结果与强大的结果。
例如,当使用替代估计器(例如MLM而不是ML)时,您将获得标准和强大的结果。
我自己尝试过,并且使用 fitmeasures 我得到了标准结果,而不是强大的结果。检查您是否也是如此。
J.
You might be getting Standard results vs Robust results.
For instance, when using alternative estimators such as MLM instead of ML, you get both a Standard and a Robust result.
I have tried it myself and by using fitmeasures I get the standard results, not the robust. Check if that is the case for you as well.
J.