r lavaan中的CFA:用命令fitmeasures()的拟合度措施的不同结果与摘要

发布于 2025-02-04 17:32:40 字数 897 浏览 4 评论 0原文

我正在计算具有以下模型的验证性因素分析:


library(lavaan)
CFA <- "
    A =~ BK01_01_z+BK03_01_z+ BK03_03_z+ BK03_04_z+BK03_05_z+ BK03_07_z+ BK03_08_z+ BK05_01_z+BK05_02_z+ BK05_03_z+ BK05_04_z 
    
    B=~GK04_01_z + GK04_02_z+ GK04_03_z+GK04_04_z+GK04_05_z 
    
    C =~ GS09_01_z+GS09_02_z
    
    Z=~A+B+C
    "

    fit <- cfa(CFA, data = df_clean, estimator ="WLSMV",
                  ordered = c("GS09_01_z",
                              "GS09_02_z"))

如您所见,有两个序数(二进制)变量应该加载到一个因素上。数据是非正常的也可能重要的。

当我现在查看结果时,我会为不同的命令获得不同的结果。

与:

summary(fit, fit.measures=TRUE) 

我得到RMSEA = 0.069; CFI = 0.663; TLI = 0.609

with:

fitmeasures(fit, c("cfi","rmsea","srmr","tli"))

这些是结果:

CFI = 0.964; RMSEA = 0.041; SRMR = 0.060; TLI = 0.958



我试图搜索我的问题,但是我找不到为什么?也许有人遇到了类似的问题?

I'm calculating a confirmatory factor analysis with the following model:


library(lavaan)
CFA <- "
    A =~ BK01_01_z+BK03_01_z+ BK03_03_z+ BK03_04_z+BK03_05_z+ BK03_07_z+ BK03_08_z+ BK05_01_z+BK05_02_z+ BK05_03_z+ BK05_04_z 
    
    B=~GK04_01_z + GK04_02_z+ GK04_03_z+GK04_04_z+GK04_05_z 
    
    C =~ GS09_01_z+GS09_02_z
    
    Z=~A+B+C
    "

    fit <- cfa(CFA, data = df_clean, estimator ="WLSMV",
                  ordered = c("GS09_01_z",
                              "GS09_02_z"))

As you can see, there are two ordinal (binary) variables that are supposed to load onto one factor. It may also be important that the data is non-normal.

When I'm looking at the results now, I'm getting different results for different commands.

With:

summary(fit, fit.measures=TRUE) 

I'm getting RMSEA = 0.069; CFI = 0.663; TLI = 0.609

with:

fitmeasures(fit, c("cfi","rmsea","srmr","tli"))

these are the results:

cfi = 0.964; rmsea = 0.041; srmr = 0.060; tli = 0.958



I've tried to search for my problem, but I couldn't find out why? Maybe someone has encountered a similar issue?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

枕头说它不想醒 2025-02-11 17:32:40

您可能会获得标准结果与强大的结果。

例如,当使用替代估计器(例如MLM而不是ML)时,您将获得标准和强大的结果。

我自己尝试过,并且使用 fitmeasures 我得到了标准结果,而不是强大的结果。检查您是否也是如此。

J.

You might be getting Standard results vs Robust results.

For instance, when using alternative estimators such as MLM instead of ML, you get both a Standard and a Robust result.

I have tried it myself and by using fitmeasures I get the standard results, not the robust. Check if that is the case for you as well.

J.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文