&quot“ value error:name&quot” input_2&quot'在Anaconda的模型中使用了2次,但在Jupyter笔记本中没有错误

发布于 2025-02-04 06:25:42 字数 10737 浏览 1 评论 0原文

我正在遵循有关角色级的重复序列到序列模型的教程:并在Anaconda的模型中使用了2次“ valueError:name'input_2”,但我没有在Jupyter Notebook中遇到错误。

开发环境:
Python 3.10.4
conda 4.12.0
TensorFlow 2.9.0
Keras 2.9.0
ipykernel 6.13.0
ipython 8.3.0
jupyter-client 7.3.1
jupyter核4.10.0
jupyter-server 1.17.0
Jupyterlab 3.4.2
Jupyterlab-Pygments 0.2.2
jupyterlab-server 2.14.0
Windows 10

这是整个代码:

import numpy as np
import tensorflow as tf
from tensorflow import keras

!!curl -O http://www.manythings.org/anki/fra-eng.zip
!!unzip fra-eng.zip

batch_size = 64  # Batch size for training.
epochs = 100  # Number of epochs to train for.
latent_dim = 256  # Latent dimensionality of the encoding space.
num_samples = 10000  # Number of samples to train on.
# Path to the data txt file on disk.
data_path = "fra.txt"

# Vectorize the data.
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
with open(data_path, "r", encoding="utf-8") as f:
    lines = f.read().split("\n")
for line in lines[: min(num_samples, len(lines) - 1)]:
    input_text, target_text, _ = line.split("\t")
    # We use "tab" as the "start sequence" character
    # for the targets, and "\n" as "end sequence" character.
    target_text = "\t" + target_text + "\n"
    input_texts.append(input_text)
    target_texts.append(target_text)
    for char in input_text:
        if char not in input_characters:
            input_characters.add(char)
    for char in target_text:
        if char not in target_characters:
            target_characters.add(char)

input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])

print("Number of samples:", len(input_texts))
print("Number of unique input tokens:", num_encoder_tokens)
print("Number of unique output tokens:", num_decoder_tokens)
print("Max sequence length for inputs:", max_encoder_seq_length)
print("Max sequence length for outputs:", max_decoder_seq_length)

input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])

encoder_input_data = np.zeros(
    (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype="float32"
)
decoder_input_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype="float32"
)
decoder_target_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype="float32"
)

for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
    for t, char in enumerate(input_text):
        encoder_input_data[i, t, input_token_index[char]] = 1.0
    encoder_input_data[i, t + 1 :, input_token_index[" "]] = 1.0
    for t, char in enumerate(target_text):
        # decoder_target_data is ahead of decoder_input_data by one timestep
        decoder_input_data[i, t, target_token_index[char]] = 1.0
        if t > 0:
            # decoder_target_data will be ahead by one timestep
            # and will not include the start character.
            decoder_target_data[i, t - 1, target_token_index[char]] = 1.0
    decoder_input_data[i, t + 1 :, target_token_index[" "]] = 1.0
    decoder_target_data[i, t:, target_token_index[" "]] = 1.0

# Define an input sequence and process it.
encoder_inputs = keras.Input(shape=(None, num_encoder_tokens))
encoder = keras.layers.LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)

# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]

# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = keras.Input(shape=(None, num_decoder_tokens))

# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = keras.layers.LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = keras.layers.Dense(num_decoder_tokens, activation="softmax")
decoder_outputs = decoder_dense(decoder_outputs)

# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)

model.compile(
    optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"]
)
model.fit(
    [encoder_input_data, decoder_input_data],
    decoder_target_data,
    batch_size=batch_size,
    epochs=epochs,
    validation_split=0.2,
)
# Save model
model.save("s2s")

# Define sampling models
# Restore the model and construct the encoder and decoder.
model = keras.models.load_model("s2s")

encoder_inputs = model.input[0]  # input_1
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output  # lstm_1
encoder_states = [state_h_enc, state_c_enc]
encoder_model = keras.Model(encoder_inputs, encoder_states)

decoder_inputs = model.input[1]  # input_2
decoder_state_input_h = keras.Input(shape=(latent_dim,))
decoder_state_input_c = keras.Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = keras.Model(
    [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)

# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())


def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index["\t"]] = 1.0

    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ""
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict([target_seq] + states_value)

        # Sample a token
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        sampled_char = reverse_target_char_index[sampled_token_index]
        decoded_sentence += sampled_char

        # Exit condition: either hit max length
        # or find stop character.
        if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
            stop_condition = True

        # Update the target sequence (of length 1).
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.0

        # Update states
        states_value = [h, c]
    return decoded_sentence

for seq_index in range(20):
    # Take one sequence (part of the training set)
    # for trying out decoding.
    input_seq = encoder_input_data[seq_index : seq_index + 1]
    decoded_sentence = decode_sequence(input_seq)
    print("-")
    print("Input sentence:", input_texts[seq_index])
    print("Decoded sentence:", decoded_sentence)

jupyter笔记本中的一切都很好,但是当我在conda命令行中运行代码时。 问题来自模型推理部分:

model = keras.models.load_model("s2s")

encoder_inputs = model.input[0]  # input_1
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output  # lstm_1
encoder_states = [state_h_enc, state_c_enc]
encoder_model = keras.Model(encoder_inputs, encoder_states)

decoder_inputs = model.input[1]  # input_2
decoder_state_input_h = keras.Input(shape=(latent_dim,))
decoder_state_input_c = keras.Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = keras.Model(
    [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)

# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())


def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index["\t"]] = 1.0

    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ""
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict([target_seq] + states_value)

        # Sample a token
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        sampled_char = reverse_target_char_index[sampled_token_index]
        decoded_sentence += sampled_char

        # Exit condition: either hit max length
        # or find stop character.
        if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
            stop_condition = True

        # Update the target sequence (of length 1).
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.0

        # Update states
        states_value = [h, c]
    return decoded_sentence
    
for seq_index in range(20):
    # Take one sequence (part of the training set)
    # for trying out decoding.
    input_seq = encoder_input_data[seq_index : seq_index + 1]
    decoded_sentence = decode_sequence(input_seq)
    print("-")
    print("Input sentence:", input_texts[seq_index])
    print("Decoded sentence:", decoded_sentence)

我知道变量dxoder_inputs使用了两次,但这是教程中写的,所以我不明白为什么有问题。有人可以帮我吗?

i was following a tutorial about character-level recurrent sequence-to-sequence model from the keras website: Tutorial and got a "ValueError: The name "input_2" is used 2 times in the model in anaconda but i didn't got the error in jupyter notebook.

Development Environment:

Python 3.10.4

conda 4.12.0

tensorflow 2.9.0

keras 2.9.0

ipykernel 6.13.0

ipython 8.3.0

jupyter-client 7.3.1

jupyter-core 4.10.0

jupyter-server 1.17.0

jupyterlab 3.4.2

jupyterlab-pygments 0.2.2

jupyterlab-server 2.14.0

Windows 10

Here's the whole code:

import numpy as np
import tensorflow as tf
from tensorflow import keras

!!curl -O http://www.manythings.org/anki/fra-eng.zip
!!unzip fra-eng.zip

batch_size = 64  # Batch size for training.
epochs = 100  # Number of epochs to train for.
latent_dim = 256  # Latent dimensionality of the encoding space.
num_samples = 10000  # Number of samples to train on.
# Path to the data txt file on disk.
data_path = "fra.txt"

# Vectorize the data.
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
with open(data_path, "r", encoding="utf-8") as f:
    lines = f.read().split("\n")
for line in lines[: min(num_samples, len(lines) - 1)]:
    input_text, target_text, _ = line.split("\t")
    # We use "tab" as the "start sequence" character
    # for the targets, and "\n" as "end sequence" character.
    target_text = "\t" + target_text + "\n"
    input_texts.append(input_text)
    target_texts.append(target_text)
    for char in input_text:
        if char not in input_characters:
            input_characters.add(char)
    for char in target_text:
        if char not in target_characters:
            target_characters.add(char)

input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])

print("Number of samples:", len(input_texts))
print("Number of unique input tokens:", num_encoder_tokens)
print("Number of unique output tokens:", num_decoder_tokens)
print("Max sequence length for inputs:", max_encoder_seq_length)
print("Max sequence length for outputs:", max_decoder_seq_length)

input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])

encoder_input_data = np.zeros(
    (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype="float32"
)
decoder_input_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype="float32"
)
decoder_target_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype="float32"
)

for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
    for t, char in enumerate(input_text):
        encoder_input_data[i, t, input_token_index[char]] = 1.0
    encoder_input_data[i, t + 1 :, input_token_index[" "]] = 1.0
    for t, char in enumerate(target_text):
        # decoder_target_data is ahead of decoder_input_data by one timestep
        decoder_input_data[i, t, target_token_index[char]] = 1.0
        if t > 0:
            # decoder_target_data will be ahead by one timestep
            # and will not include the start character.
            decoder_target_data[i, t - 1, target_token_index[char]] = 1.0
    decoder_input_data[i, t + 1 :, target_token_index[" "]] = 1.0
    decoder_target_data[i, t:, target_token_index[" "]] = 1.0

# Define an input sequence and process it.
encoder_inputs = keras.Input(shape=(None, num_encoder_tokens))
encoder = keras.layers.LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)

# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]

# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = keras.Input(shape=(None, num_decoder_tokens))

# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = keras.layers.LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = keras.layers.Dense(num_decoder_tokens, activation="softmax")
decoder_outputs = decoder_dense(decoder_outputs)

# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)

model.compile(
    optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"]
)
model.fit(
    [encoder_input_data, decoder_input_data],
    decoder_target_data,
    batch_size=batch_size,
    epochs=epochs,
    validation_split=0.2,
)
# Save model
model.save("s2s")

# Define sampling models
# Restore the model and construct the encoder and decoder.
model = keras.models.load_model("s2s")

encoder_inputs = model.input[0]  # input_1
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output  # lstm_1
encoder_states = [state_h_enc, state_c_enc]
encoder_model = keras.Model(encoder_inputs, encoder_states)

decoder_inputs = model.input[1]  # input_2
decoder_state_input_h = keras.Input(shape=(latent_dim,))
decoder_state_input_c = keras.Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = keras.Model(
    [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)

# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())


def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index["\t"]] = 1.0

    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ""
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict([target_seq] + states_value)

        # Sample a token
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        sampled_char = reverse_target_char_index[sampled_token_index]
        decoded_sentence += sampled_char

        # Exit condition: either hit max length
        # or find stop character.
        if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
            stop_condition = True

        # Update the target sequence (of length 1).
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.0

        # Update states
        states_value = [h, c]
    return decoded_sentence

for seq_index in range(20):
    # Take one sequence (part of the training set)
    # for trying out decoding.
    input_seq = encoder_input_data[seq_index : seq_index + 1]
    decoded_sentence = decode_sequence(input_seq)
    print("-")
    print("Input sentence:", input_texts[seq_index])
    print("Decoded sentence:", decoded_sentence)

Everything works well in jupyter notebook, but not when i run the code in conda command line.
the problem comes from the model inference part:

model = keras.models.load_model("s2s")

encoder_inputs = model.input[0]  # input_1
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output  # lstm_1
encoder_states = [state_h_enc, state_c_enc]
encoder_model = keras.Model(encoder_inputs, encoder_states)

decoder_inputs = model.input[1]  # input_2
decoder_state_input_h = keras.Input(shape=(latent_dim,))
decoder_state_input_c = keras.Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = keras.Model(
    [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)

# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())


def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index["\t"]] = 1.0

    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ""
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict([target_seq] + states_value)

        # Sample a token
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        sampled_char = reverse_target_char_index[sampled_token_index]
        decoded_sentence += sampled_char

        # Exit condition: either hit max length
        # or find stop character.
        if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
            stop_condition = True

        # Update the target sequence (of length 1).
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.0

        # Update states
        states_value = [h, c]
    return decoded_sentence
    
for seq_index in range(20):
    # Take one sequence (part of the training set)
    # for trying out decoding.
    input_seq = encoder_input_data[seq_index : seq_index + 1]
    decoded_sentence = decode_sequence(input_seq)
    print("-")
    print("Input sentence:", input_texts[seq_index])
    print("Decoded sentence:", decoded_sentence)

I understand that the variable decoder_inputs is used twice, but that's what written in the tutorial so i don't understand why i have the problem. Can somebody help me please?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文