R:如何循环循环一次丢弃一个观察结果?
通过回归模型,我每次都会删除一个观察结果,以估计有影响力的观察的效果。
我想多次运行该模型,每次丢弃观察结果并提取相关系数估算并将其存储在向量中。我认为这很容易通过相当直截了当的循环来完成,但是,我陷入了细节。
我想留下一个载体,其中包含来自同一模型的N迭代的N系数估计值。任何帮助都是有益的!
下面我提供了一些虚拟数据和示例代码。
#Dummy data:
set.seed(489)
patientn <- rep(1:400)
gender <- rbinom(400, 1, 0.5)
productid <- rep(c("Product A","Product B"), times=200)
country <- rep(c("USA","UK","Canada","Mexico"), each=50)
baselarea <- rnorm(400,400,60) #baseline area
baselarea2 <- rnorm(400,400,65) #baseline area2
sfactor <- c(
rep(c(0.3,0.9), times = 25),
rep(c(0.4,0.5), times = 25),
rep(c(0.2,0.4), times = 25),
rep(c(0.3,0.7), times = 25)
)
rashdummy2a <- data.frame(patientn,gender,productid,country,baselarea,baselarea2,sfactor)
Data <- rashdummy2a %>% mutate(rashleft = baselarea2*sfactor/baselarea*100) ```
## Example of how this can be done manually:
# model
m1<-lm(rashleft ~ gender + baselarea + sfactor, data = data)
# extracting relevant coefficient estimates, each time dropping a different "patient" ("patientn")
betas <- c(lm(rashleft ~ gender + baselarea + sfactor, data = rashdummy2b, patientn !=1)$coefficients[2],
lm(rashleft ~ gender + baselarea + sfactor, data = rashdummy2b, patientn !=2)$coefficients[2],
lm(rashleft ~ gender + baselarea + sfactor, data = rashdummy2b, patientn !=3)$coefficients[2])
# the betas vector now stores the relevant coefficient estimates (coefficient nr 2, for gender) for three different variations of the model.
I have trouble looping through a regression model dropping one observation each time to estimate the effect of influential observations.
I would like to run the model several times, each time dropping the ith observation and extracting the relevant coefficient estimate and store it in a vector. I think this could quite easily be done with a fairly straight forward loop, however, I'm stuck at the specifics.
I want to be left with a vector containing n coefficient estimates from n iterations of the same model. Any help would be beneficial!
Below I provide some dummy data and example code.
#Dummy data:
set.seed(489)
patientn <- rep(1:400)
gender <- rbinom(400, 1, 0.5)
productid <- rep(c("Product A","Product B"), times=200)
country <- rep(c("USA","UK","Canada","Mexico"), each=50)
baselarea <- rnorm(400,400,60) #baseline area
baselarea2 <- rnorm(400,400,65) #baseline area2
sfactor <- c(
rep(c(0.3,0.9), times = 25),
rep(c(0.4,0.5), times = 25),
rep(c(0.2,0.4), times = 25),
rep(c(0.3,0.7), times = 25)
)
rashdummy2a <- data.frame(patientn,gender,productid,country,baselarea,baselarea2,sfactor)
Data <- rashdummy2a %>% mutate(rashleft = baselarea2*sfactor/baselarea*100) ```
## Example of how this can be done manually:
# model
m1<-lm(rashleft ~ gender + baselarea + sfactor, data = data)
# extracting relevant coefficient estimates, each time dropping a different "patient" ("patientn")
betas <- c(lm(rashleft ~ gender + baselarea + sfactor, data = rashdummy2b, patientn !=1)$coefficients[2],
lm(rashleft ~ gender + baselarea + sfactor, data = rashdummy2b, patientn !=2)$coefficients[2],
lm(rashleft ~ gender + baselarea + sfactor, data = rashdummy2b, patientn !=3)$coefficients[2])
# the betas vector now stores the relevant coefficient estimates (coefficient nr 2, for gender) for three different variations of the model.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
我们可以使用循环。在您的问题中,您使用未定义的对象
rashdummy2b
。现在,我使用了数据
,但是您可以通过选择对象替换。结果
We can use a for loop. In your question you use an object
rashdummy2b
which is not defined. Now I useddata
but you can replace that by an object of choice.Result
您可以使用否定索引删除特定的行(或列)。在您的情况下,您进行以下操作:
You can drop a particular row (or column) by using a negative index. In your case, you proceed as follows: