如何为梯度bloostingClassifier导出_tree?
此代码适用于决策仪。
r = export_text(tree2, feature_names=fn)
print(r)
但是,对于RandomForestClassifier
from sklearn.tree import export_text
print(export_text(tree3.estimators_[0],
spacing=3, decimals=3,
feature_names=fn))
,渐变BoostingClassifier无法使用。
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_1840/2106124489.py in <module>
1 from sklearn.tree import export_text
----> 2 r = export_text(tree4, feature_names=fn)
3 print(r)
~\anaconda\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
61 extra_args = len(args) - len(all_args)
62 if extra_args <= 0:
---> 63 return f(*args, **kwargs)
64
65 # extra_args > 0
~\anaconda\anaconda3\lib\site-packages\sklearn\tree\_export.py in export_text(decision_tree, feature_names, max_depth, spacing, decimals, show_weights)
875 """
876 check_is_fitted(decision_tree)
--> 877 tree_ = decision_tree.tree_
878 if is_classifier(decision_tree):
879 class_names = decision_tree.classes_
AttributeError: 'GradientBoostingClassifier' object has no attribute 'tree_'
有没有办法在GradientBoostingClassifier中显示Export_Tree?
This code works for DecisionTreeClassifier.
r = export_text(tree2, feature_names=fn)
print(r)
And for RandomForestClassifier
from sklearn.tree import export_text
print(export_text(tree3.estimators_[0],
spacing=3, decimals=3,
feature_names=fn))
However, GradientBoostingClassifier didn't work.
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_1840/2106124489.py in <module>
1 from sklearn.tree import export_text
----> 2 r = export_text(tree4, feature_names=fn)
3 print(r)
~\anaconda\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
61 extra_args = len(args) - len(all_args)
62 if extra_args <= 0:
---> 63 return f(*args, **kwargs)
64
65 # extra_args > 0
~\anaconda\anaconda3\lib\site-packages\sklearn\tree\_export.py in export_text(decision_tree, feature_names, max_depth, spacing, decimals, show_weights)
875 """
876 check_is_fitted(decision_tree)
--> 877 tree_ = decision_tree.tree_
878 if is_classifier(decision_tree):
879 class_names = decision_tree.classes_
AttributeError: 'GradientBoostingClassifier' object has no attribute 'tree_'
Is there a way to show the export_tree in GradientBoostingClassifier?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以查看渐变bloostingClassifier(GBC)的基础决策树,而不是GBC本身。
假设您的GBC模型是
MDL
您可以选择一棵树并查看
You can view the underlying decision tree of a GradientBoostingClassifier (GBC), not the GBC itself.
Assuming your GBC model is
mdl
You can select a tree and view it