在目标中找到子孔的更好方法

发布于 2025-02-03 18:25:03 字数 5406 浏览 2 评论 0原文

嗨,我正在制作一个有关检测目标圆圈中的子弹孔的项目。我最初的想法是使用Hough Circle算法来检测两个目标,这些目标对于直接在其前面的照片和不那么好的弹孔都可以。太好,我在徘徊,如果有人可以给我提供一些更好的解决方案,以找到它们或帮助我改进此代码。

import cv2 as cv   
import numpy as np 
import math 
import sys
from PIL import Image
import matplotlib.pyplot as plt

MAX_POINTS = 10

def main(argv):

    default_file = 'tarczamala.jpg'
    default_size = 600, 600

    im = Image.open(default_file)
    im = im.resize(default_size, Image.ANTIALIAS)
    im.save('600' + default_file)

    filename = argv[0] if len(argv) > 0 else '600' + default_file
    # Loads an image
    src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_COLOR)
    # Check if image is loaded fine
    if src is None:
        print ('Error opening image!')
        print ('Usage: hough_circle.py [image_name -- default ' + default_file + '] \n')
        return -1

    # skala szarości
    gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    cv.imshow('gray', gray)

    # Bilateral
    bilateral = cv.bilateralFilter(gray, 7, 15, 10)
    cv.imshow('bilateral', bilateral)

    blank = np.zeros(bilateral.shape[:2], dtype='uint8')
    cv.imshow('blank', blank)

    # mask = cv.circle(blank, (bilateral.shape[1] // 2, bilateral.shape[0] // 2), 320, 255, -1)
    # cv.imshow('Mask', mask)
    #
    # masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
    # cv.imshow('masked', masked)

    # Edge Cascade
    canny = cv.Canny(bilateral, 50, 175)
    cv.imshow('canny1', canny)

    # ret, tresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY)
    # cv.imshow('tresch', tresh)

    contours, hierarchies = cv.findContours(canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
    print(f'{len(contours)} contour(s) found')

    # cv.drawContours(blank, contours, -1, (255,0,0), 1)
    # cv.imshow('contours drawn', blank)

    rows = canny.shape[0]

 # Target

    circles = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 0.01,
                              param1=100, param2=50,
                              minRadius=7, maxRadius=300)

    # print(f'{circles}"')

    biggestCircle = findBiggestCircle(circles)
    # print(f'{biggestCircle} biggest circle')

    mask = cv.circle(blank, (math.floor(biggestCircle[0]), math.floor(biggestCircle[1])), math.floor(biggestCircle[2]), 255, -1)
    cv.imshow('rysowanie granicy', mask)

    masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
    cv.imshow('granice', masked)

    # Edge Cascade
    canny = cv.Canny(masked, 50, 175)
    cv.imshow('canny2', canny)

    if biggestCircle is not None:
        circles = np.uint16(np.around(circles))

        # print(f'{biggestCircle} biggest circle')

        delta_r = biggestCircle[2] / 10
        biggest_circle_center = [biggestCircle[0], biggestCircle[1]]

        center = (math.floor(biggestCircle[0]), math.floor(biggestCircle[1]))
        # print(f'{center} center')
        # circle center
        cv.circle(src, center, 1, (255, 0, 0), 3)
        # circle outline
        radius = math.floor(biggestCircle[2])
        cv.circle(src, center, radius, (0, 0, 255), 3)



# bullet holes

    hits = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 10,
                           param1=300, param2=10,
                           minRadius=7, maxRadius=10)
    # print(f'{hits}"')

    score = countHitScore(hits.tolist(), delta_r, biggest_circle_center)

    print(f'The score is: {score}"')

    if hits is not None:
        hits = np.uint16(np.around(hits))
        for i in hits[0, :]:
            # print(f'promien trafienia {i[2]}"')
            center = (i[0], i[1])
            # circle center
            cv.circle(src, center, 1, (0, 100, 100), 3)
            # circle outline
            radius = i[2]
            cv.circle(src, center, radius, (255, 0, 255), 3)

    cv.imshow("detected circles", src)
    cv.waitKey(0)

    return 0

def findBiggestCircle(circles):

    # print(f'{circles}')
    listOfCircles = circles[0]
    biggestCircle = listOfCircles[0]

    for circle in listOfCircles:
        # print(f'{circle} circle')
        # print(f'2 {circle}')
        # print(f'3 {biggestCircle}')
        if circle[2] > biggestCircle[2]:
            # print('4')
            biggestCircle = circle
    print(biggestCircle)
    return biggestCircle.tolist()

def countHitScore(hits, delta_r, target_center):
    score = 0
    print(f'{hits} hits')

    for hit in hits[0]:
        # print(f'{hit} hit')
        # print(f'{(target_center)} center')
        x_dist = hit[0] - target_center[0] if hit[0] > target_center[0] else target_center[0] - hit[0]
        y_dist = hit[1] - target_center[1] if hit[1] > target_center[1] else target_center[1] - hit[1]

        total_dist = math.hypot(x_dist, y_dist) - hit[2]

        punkty = math.ceil(total_dist / delta_r)

        if punkty < 1:
            punkty = 1

        score += 11 - punkty

        # print(f'{total_dist / delta_r} math')
        # print(f'{total_dist / delta_r} total_dist / delta_r')
        print(f'{11 - punkty} zdobyte punkty')
        # print(f'{x_dist} x {y_dist} y')

    return score

if __name__ == "__main__":
    main(sys.argv[1:])

“在此处输入图像说明”

”

Hi I'm making a project about detecting bullet holes in target circles. My original idea was to use Hough circle algorithms to detect both targets which works quite alright for photos that are straight in front of it and bullet holes that are not as good. Sooo I was wandering if anyone could tip me with some better solution on finding them or helping me improve this code.

import cv2 as cv   
import numpy as np 
import math 
import sys
from PIL import Image
import matplotlib.pyplot as plt

MAX_POINTS = 10

def main(argv):

    default_file = 'tarczamala.jpg'
    default_size = 600, 600

    im = Image.open(default_file)
    im = im.resize(default_size, Image.ANTIALIAS)
    im.save('600' + default_file)

    filename = argv[0] if len(argv) > 0 else '600' + default_file
    # Loads an image
    src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_COLOR)
    # Check if image is loaded fine
    if src is None:
        print ('Error opening image!')
        print ('Usage: hough_circle.py [image_name -- default ' + default_file + '] \n')
        return -1

    # skala szarości
    gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    cv.imshow('gray', gray)

    # Bilateral
    bilateral = cv.bilateralFilter(gray, 7, 15, 10)
    cv.imshow('bilateral', bilateral)

    blank = np.zeros(bilateral.shape[:2], dtype='uint8')
    cv.imshow('blank', blank)

    # mask = cv.circle(blank, (bilateral.shape[1] // 2, bilateral.shape[0] // 2), 320, 255, -1)
    # cv.imshow('Mask', mask)
    #
    # masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
    # cv.imshow('masked', masked)

    # Edge Cascade
    canny = cv.Canny(bilateral, 50, 175)
    cv.imshow('canny1', canny)

    # ret, tresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY)
    # cv.imshow('tresch', tresh)

    contours, hierarchies = cv.findContours(canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
    print(f'{len(contours)} contour(s) found')

    # cv.drawContours(blank, contours, -1, (255,0,0), 1)
    # cv.imshow('contours drawn', blank)

    rows = canny.shape[0]

 # Target

    circles = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 0.01,
                              param1=100, param2=50,
                              minRadius=7, maxRadius=300)

    # print(f'{circles}"')

    biggestCircle = findBiggestCircle(circles)
    # print(f'{biggestCircle} biggest circle')

    mask = cv.circle(blank, (math.floor(biggestCircle[0]), math.floor(biggestCircle[1])), math.floor(biggestCircle[2]), 255, -1)
    cv.imshow('rysowanie granicy', mask)

    masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
    cv.imshow('granice', masked)

    # Edge Cascade
    canny = cv.Canny(masked, 50, 175)
    cv.imshow('canny2', canny)

    if biggestCircle is not None:
        circles = np.uint16(np.around(circles))

        # print(f'{biggestCircle} biggest circle')

        delta_r = biggestCircle[2] / 10
        biggest_circle_center = [biggestCircle[0], biggestCircle[1]]

        center = (math.floor(biggestCircle[0]), math.floor(biggestCircle[1]))
        # print(f'{center} center')
        # circle center
        cv.circle(src, center, 1, (255, 0, 0), 3)
        # circle outline
        radius = math.floor(biggestCircle[2])
        cv.circle(src, center, radius, (0, 0, 255), 3)



# bullet holes

    hits = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 10,
                           param1=300, param2=10,
                           minRadius=7, maxRadius=10)
    # print(f'{hits}"')

    score = countHitScore(hits.tolist(), delta_r, biggest_circle_center)

    print(f'The score is: {score}"')

    if hits is not None:
        hits = np.uint16(np.around(hits))
        for i in hits[0, :]:
            # print(f'promien trafienia {i[2]}"')
            center = (i[0], i[1])
            # circle center
            cv.circle(src, center, 1, (0, 100, 100), 3)
            # circle outline
            radius = i[2]
            cv.circle(src, center, radius, (255, 0, 255), 3)

    cv.imshow("detected circles", src)
    cv.waitKey(0)

    return 0

def findBiggestCircle(circles):

    # print(f'{circles}')
    listOfCircles = circles[0]
    biggestCircle = listOfCircles[0]

    for circle in listOfCircles:
        # print(f'{circle} circle')
        # print(f'2 {circle}')
        # print(f'3 {biggestCircle}')
        if circle[2] > biggestCircle[2]:
            # print('4')
            biggestCircle = circle
    print(biggestCircle)
    return biggestCircle.tolist()

def countHitScore(hits, delta_r, target_center):
    score = 0
    print(f'{hits} hits')

    for hit in hits[0]:
        # print(f'{hit} hit')
        # print(f'{(target_center)} center')
        x_dist = hit[0] - target_center[0] if hit[0] > target_center[0] else target_center[0] - hit[0]
        y_dist = hit[1] - target_center[1] if hit[1] > target_center[1] else target_center[1] - hit[1]

        total_dist = math.hypot(x_dist, y_dist) - hit[2]

        punkty = math.ceil(total_dist / delta_r)

        if punkty < 1:
            punkty = 1

        score += 11 - punkty

        # print(f'{total_dist / delta_r} math')
        # print(f'{total_dist / delta_r} total_dist / delta_r')
        print(f'{11 - punkty} zdobyte punkty')
        # print(f'{x_dist} x {y_dist} y')

    return score

if __name__ == "__main__":
    main(sys.argv[1:])

enter image description here

enter image description here

enter image description here

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文