在目标中找到子孔的更好方法
嗨,我正在制作一个有关检测目标圆圈中的子弹孔的项目。我最初的想法是使用Hough Circle算法来检测两个目标,这些目标对于直接在其前面的照片和不那么好的弹孔都可以。太好,我在徘徊,如果有人可以给我提供一些更好的解决方案,以找到它们或帮助我改进此代码。
import cv2 as cv
import numpy as np
import math
import sys
from PIL import Image
import matplotlib.pyplot as plt
MAX_POINTS = 10
def main(argv):
default_file = 'tarczamala.jpg'
default_size = 600, 600
im = Image.open(default_file)
im = im.resize(default_size, Image.ANTIALIAS)
im.save('600' + default_file)
filename = argv[0] if len(argv) > 0 else '600' + default_file
# Loads an image
src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: hough_circle.py [image_name -- default ' + default_file + '] \n')
return -1
# skala szarości
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
cv.imshow('gray', gray)
# Bilateral
bilateral = cv.bilateralFilter(gray, 7, 15, 10)
cv.imshow('bilateral', bilateral)
blank = np.zeros(bilateral.shape[:2], dtype='uint8')
cv.imshow('blank', blank)
# mask = cv.circle(blank, (bilateral.shape[1] // 2, bilateral.shape[0] // 2), 320, 255, -1)
# cv.imshow('Mask', mask)
#
# masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
# cv.imshow('masked', masked)
# Edge Cascade
canny = cv.Canny(bilateral, 50, 175)
cv.imshow('canny1', canny)
# ret, tresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY)
# cv.imshow('tresch', tresh)
contours, hierarchies = cv.findContours(canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
print(f'{len(contours)} contour(s) found')
# cv.drawContours(blank, contours, -1, (255,0,0), 1)
# cv.imshow('contours drawn', blank)
rows = canny.shape[0]
# Target
circles = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 0.01,
param1=100, param2=50,
minRadius=7, maxRadius=300)
# print(f'{circles}"')
biggestCircle = findBiggestCircle(circles)
# print(f'{biggestCircle} biggest circle')
mask = cv.circle(blank, (math.floor(biggestCircle[0]), math.floor(biggestCircle[1])), math.floor(biggestCircle[2]), 255, -1)
cv.imshow('rysowanie granicy', mask)
masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
cv.imshow('granice', masked)
# Edge Cascade
canny = cv.Canny(masked, 50, 175)
cv.imshow('canny2', canny)
if biggestCircle is not None:
circles = np.uint16(np.around(circles))
# print(f'{biggestCircle} biggest circle')
delta_r = biggestCircle[2] / 10
biggest_circle_center = [biggestCircle[0], biggestCircle[1]]
center = (math.floor(biggestCircle[0]), math.floor(biggestCircle[1]))
# print(f'{center} center')
# circle center
cv.circle(src, center, 1, (255, 0, 0), 3)
# circle outline
radius = math.floor(biggestCircle[2])
cv.circle(src, center, radius, (0, 0, 255), 3)
# bullet holes
hits = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 10,
param1=300, param2=10,
minRadius=7, maxRadius=10)
# print(f'{hits}"')
score = countHitScore(hits.tolist(), delta_r, biggest_circle_center)
print(f'The score is: {score}"')
if hits is not None:
hits = np.uint16(np.around(hits))
for i in hits[0, :]:
# print(f'promien trafienia {i[2]}"')
center = (i[0], i[1])
# circle center
cv.circle(src, center, 1, (0, 100, 100), 3)
# circle outline
radius = i[2]
cv.circle(src, center, radius, (255, 0, 255), 3)
cv.imshow("detected circles", src)
cv.waitKey(0)
return 0
def findBiggestCircle(circles):
# print(f'{circles}')
listOfCircles = circles[0]
biggestCircle = listOfCircles[0]
for circle in listOfCircles:
# print(f'{circle} circle')
# print(f'2 {circle}')
# print(f'3 {biggestCircle}')
if circle[2] > biggestCircle[2]:
# print('4')
biggestCircle = circle
print(biggestCircle)
return biggestCircle.tolist()
def countHitScore(hits, delta_r, target_center):
score = 0
print(f'{hits} hits')
for hit in hits[0]:
# print(f'{hit} hit')
# print(f'{(target_center)} center')
x_dist = hit[0] - target_center[0] if hit[0] > target_center[0] else target_center[0] - hit[0]
y_dist = hit[1] - target_center[1] if hit[1] > target_center[1] else target_center[1] - hit[1]
total_dist = math.hypot(x_dist, y_dist) - hit[2]
punkty = math.ceil(total_dist / delta_r)
if punkty < 1:
punkty = 1
score += 11 - punkty
# print(f'{total_dist / delta_r} math')
# print(f'{total_dist / delta_r} total_dist / delta_r')
print(f'{11 - punkty} zdobyte punkty')
# print(f'{x_dist} x {y_dist} y')
return score
if __name__ == "__main__":
main(sys.argv[1:])
Hi I'm making a project about detecting bullet holes in target circles. My original idea was to use Hough circle algorithms to detect both targets which works quite alright for photos that are straight in front of it and bullet holes that are not as good. Sooo I was wandering if anyone could tip me with some better solution on finding them or helping me improve this code.
import cv2 as cv
import numpy as np
import math
import sys
from PIL import Image
import matplotlib.pyplot as plt
MAX_POINTS = 10
def main(argv):
default_file = 'tarczamala.jpg'
default_size = 600, 600
im = Image.open(default_file)
im = im.resize(default_size, Image.ANTIALIAS)
im.save('600' + default_file)
filename = argv[0] if len(argv) > 0 else '600' + default_file
# Loads an image
src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: hough_circle.py [image_name -- default ' + default_file + '] \n')
return -1
# skala szarości
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
cv.imshow('gray', gray)
# Bilateral
bilateral = cv.bilateralFilter(gray, 7, 15, 10)
cv.imshow('bilateral', bilateral)
blank = np.zeros(bilateral.shape[:2], dtype='uint8')
cv.imshow('blank', blank)
# mask = cv.circle(blank, (bilateral.shape[1] // 2, bilateral.shape[0] // 2), 320, 255, -1)
# cv.imshow('Mask', mask)
#
# masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
# cv.imshow('masked', masked)
# Edge Cascade
canny = cv.Canny(bilateral, 50, 175)
cv.imshow('canny1', canny)
# ret, tresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY)
# cv.imshow('tresch', tresh)
contours, hierarchies = cv.findContours(canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
print(f'{len(contours)} contour(s) found')
# cv.drawContours(blank, contours, -1, (255,0,0), 1)
# cv.imshow('contours drawn', blank)
rows = canny.shape[0]
# Target
circles = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 0.01,
param1=100, param2=50,
minRadius=7, maxRadius=300)
# print(f'{circles}"')
biggestCircle = findBiggestCircle(circles)
# print(f'{biggestCircle} biggest circle')
mask = cv.circle(blank, (math.floor(biggestCircle[0]), math.floor(biggestCircle[1])), math.floor(biggestCircle[2]), 255, -1)
cv.imshow('rysowanie granicy', mask)
masked = cv.bitwise_and(bilateral, bilateral, mask=mask)
cv.imshow('granice', masked)
# Edge Cascade
canny = cv.Canny(masked, 50, 175)
cv.imshow('canny2', canny)
if biggestCircle is not None:
circles = np.uint16(np.around(circles))
# print(f'{biggestCircle} biggest circle')
delta_r = biggestCircle[2] / 10
biggest_circle_center = [biggestCircle[0], biggestCircle[1]]
center = (math.floor(biggestCircle[0]), math.floor(biggestCircle[1]))
# print(f'{center} center')
# circle center
cv.circle(src, center, 1, (255, 0, 0), 3)
# circle outline
radius = math.floor(biggestCircle[2])
cv.circle(src, center, radius, (0, 0, 255), 3)
# bullet holes
hits = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 1, 10,
param1=300, param2=10,
minRadius=7, maxRadius=10)
# print(f'{hits}"')
score = countHitScore(hits.tolist(), delta_r, biggest_circle_center)
print(f'The score is: {score}"')
if hits is not None:
hits = np.uint16(np.around(hits))
for i in hits[0, :]:
# print(f'promien trafienia {i[2]}"')
center = (i[0], i[1])
# circle center
cv.circle(src, center, 1, (0, 100, 100), 3)
# circle outline
radius = i[2]
cv.circle(src, center, radius, (255, 0, 255), 3)
cv.imshow("detected circles", src)
cv.waitKey(0)
return 0
def findBiggestCircle(circles):
# print(f'{circles}')
listOfCircles = circles[0]
biggestCircle = listOfCircles[0]
for circle in listOfCircles:
# print(f'{circle} circle')
# print(f'2 {circle}')
# print(f'3 {biggestCircle}')
if circle[2] > biggestCircle[2]:
# print('4')
biggestCircle = circle
print(biggestCircle)
return biggestCircle.tolist()
def countHitScore(hits, delta_r, target_center):
score = 0
print(f'{hits} hits')
for hit in hits[0]:
# print(f'{hit} hit')
# print(f'{(target_center)} center')
x_dist = hit[0] - target_center[0] if hit[0] > target_center[0] else target_center[0] - hit[0]
y_dist = hit[1] - target_center[1] if hit[1] > target_center[1] else target_center[1] - hit[1]
total_dist = math.hypot(x_dist, y_dist) - hit[2]
punkty = math.ceil(total_dist / delta_r)
if punkty < 1:
punkty = 1
score += 11 - punkty
# print(f'{total_dist / delta_r} math')
# print(f'{total_dist / delta_r} total_dist / delta_r')
print(f'{11 - punkty} zdobyte punkty')
# print(f'{x_dist} x {y_dist} y')
return score
if __name__ == "__main__":
main(sys.argv[1:])
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论