求解方程系统 - 符号值

发布于 2025-02-03 15:14:59 字数 9604 浏览 2 评论 0原文

我需要找出Alpha,Beta,Gama,L1,L2,L3的值,因此有必要使用符号。我试图解决,但它正在解决13个小时,但没有完成。

代码如下:

    import sympy as sym
    from scipy.optimize import fsolve
    from sympy import symbols, Eq, solve
    Alpha, Beta, Gama, l1, l2, l3 = sym.symbols('Alpha, Beta, Gama, l1, l2, l3')



    Eq1 = sym.Eq(-0.945592*l1 + 0.235025*l2 + 0.224988*l3 + 
    0.0031173010925*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.031830140825*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) - 
    0.128064361336*sym.sin(Alpha)*sym.sin(Gama) + 
    0.00038524122875*sym.sin(Alpha)*sym.cos(Beta) + 
    0.0125420486104*sym.sin(Alpha)*sym.cos(Gama) - 
    0.0125420486104*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) - 
    0.128064361336*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0003687890802*sym.sin(Beta) - 0.031830140825*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0029841733356*sym.sin(Gama)*sym.cos(Beta) - 
    0.0015499671268*sym.cos(Alpha)*sym.cos(Beta) + 
    0.0031173010925*sym.cos(Alpha)*sym.cos(Gama) + 
    0.030470799804*sym.cos(Beta)*sym.cos(Gama) - 0.0685469-(-0.998117*l1 + 0.0200759*l2 - 
    0.0579618*l3 - 0.00035774651523*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.0025561238157*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) - 
    0.127083250791*sym.sin(Alpha)*sym.sin(Gama) - 
    0.0006249025393*sym.sin(Alpha)*sym.cos(Beta) - 
    0.0177861455049*sym.sin(Alpha)*sym.cos(Gama) + 
    0.0177861455049*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) - 
    0.127083250791*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0018041769486*sym.sin(Beta) - 0.0025561238157*sym.sin(Gama)*sym.cos(Alpha) + 
    0.00103286188746*sym.sin(Gama)*sym.cos(Beta) + 
    0.031068387859*sym.cos(Alpha)*sym.cos(Beta) - 
    0.00035774651523*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0073798702614*sym.cos(Beta)*sym.cos(Gama) - 0.0520369),0)
    Eq2 = sym.Eq(-0.998117*l1 + 0.0200759*l2 - 0.0579618*l3 - 
    0.00035774651523*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.0025561238157*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) - 
    0.127083250791*sym.sin(Alpha)*sym.sin(Gama) - 
    0.0006249025393*sym.sin(Alpha)*sym.cos(Beta) - 
    0.0177861455049*sym.sin(Alpha)*sym.cos(Gama) + 
    0.0177861455049*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) - 
    0.127083250791*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0018041769486*sym.sin(Beta) - 0.0025561238157*sym.sin(Gama)*sym.cos(Alpha) + 
    0.00103286188746*sym.sin(Gama)*sym.cos(Beta) + 
    0.031068387859*sym.cos(Alpha)*sym.cos(Beta) - 
    0.00035774651523*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0073798702614*sym.cos(Beta)*sym.cos(Gama) - 0.0520369 - (-0.999146*l1 + 0.023687*l2 - 
    0.0338601*l3 - 0.00020770774995*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.002625917133*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) - 
    0.110764326414*sym.sin(Alpha)*sym.sin(Gama) + 
    0.0003371418084*sym.sin(Alpha)*sym.cos(Beta) - 
    0.0087613614021*sym.sin(Alpha)*sym.cos(Gama) + 
    0.0087613614021*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) - 
    0.110764326414*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) + 
    0.00048193757532*sym.sin(Beta) - 0.002625917133*sym.sin(Gama)*sym.cos(Alpha) + 
    0.000296914137885*sym.sin(Gama)*sym.cos(Beta) - 
    0.0142210448472*sym.cos(Alpha)*sym.cos(Beta) - 
    0.00020770774995*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0037536968259*sym.cos(Beta)*sym.cos(Gama) - 0.0424406),0)
    Eq3 = sym.Eq(0.305065*l1 + 0.880846*l2 + 0.362004*l3 + 
    0.0116832770902*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.119295616318*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.041315868145*sym.sin(Alpha)*sym.sin(Gama) + 
    0.0014438387209*sym.sin(Alpha)*sym.cos(Beta) - 
    0.0040462906405*sym.sin(Alpha)*sym.cos(Gama) + 
    0.0040462906405*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.041315868145*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0005933788566*sym.sin(Beta) - 0.119295616318*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0048015124548*sym.sin(Gama)*sym.cos(Beta) + 
    0.00050004729475*sym.cos(Alpha)*sym.cos(Beta) + 
    0.0116832770902*sym.cos(Alpha)*sym.cos(Gama) + 
    0.049027287732*sym.cos(Beta)*sym.cos(Gama) - 0.612159 - (0.025017*l1 + 0.995996*l2 - 
    0.0858224*l3 - 0.0177483499212*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.126813198708*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.003185239491*sym.sin(Alpha)*sym.sin(Gama) - 
    0.031002367492*sym.sin(Alpha)*sym.cos(Beta) + 
    0.0004457954349*sym.sin(Alpha)*sym.cos(Gama) - 
    0.0004457954349*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.003185239491*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0026713938448*sym.sin(Beta) - 0.126813198708*sym.sin(Gama)*sym.cos(Alpha) + 
    0.00152932942128*sym.sin(Gama)*sym.cos(Beta) - 
    0.000778704159*sym.cos(Alpha)*sym.cos(Beta) - 
    0.0177483499212*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0109271654352*sym.cos(Beta)*sym.cos(Gama) - 0.574885),0)
    Eq4 = sym.Eq(0.025017*l1 + 0.995996*l2 - 0.0858224*l3 - 
    0.0177483499212*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.126813198708*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.003185239491*sym.sin(Alpha)*sym.sin(Gama) - 
    0.031002367492*sym.sin(Alpha)*sym.cos(Beta) + 
    0.0004457954349*sym.sin(Alpha)*sym.cos(Gama) - 
    0.0004457954349*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.003185239491*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0026713938448*sym.sin(Beta) - 0.126813198708*sym.sin(Gama)*sym.cos(Alpha) + 
    0.00152932942128*sym.sin(Gama)*sym.cos(Beta) - 
    0.000778704159*sym.cos(Alpha)*sym.cos(Beta) - 
    0.0177483499212*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0109271654352*sym.cos(Beta)*sym.cos(Gama) - 0.574885 - (0.0313426*l1 + 0.968404*l2 - 
    0.247408*l3 - 0.0084917894154*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.107356299036*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.0034746092934*sym.sin(Alpha)*sym.sin(Gama) + 
    0.0137834878128*sym.sin(Alpha)*sym.cos(Beta) + 
    0.00027483855801*sym.sin(Alpha)*sym.cos(Gama) - 
    0.00027483855801*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0034746092934*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) + 
    0.0035214075456*sym.sin(Beta) - 0.107356299036*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0021694836408*sym.sin(Gama)*sym.cos(Beta) + 
    0.00044610549432*sym.cos(Alpha)*sym.cos(Beta) - 
    0.0084917894154*sym.cos(Alpha)*sym.cos(Gama) - 
    0.027427403472*sym.cos(Beta)*sym.cos(Gama) - 0.507045),0)
    Eq5 = sym.Eq(-0.1131*l1 + 0.410944*l2 - 0.904618*l3 + 
    0.0054506379328*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.055655378752*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) - 
    0.0153174723*sym.sin(Alpha)*sym.sin(Gama) + 0.0006735988576*sym.sin(Alpha)*sym.cos(Beta) 
    + 0.00150012447*sym.sin(Alpha)*sym.cos(Gama) - 
    0.00150012447*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) - 
    0.0153174723*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) + 0.0014828045947*sym.sin(Beta) 
    - 0.055655378752*sym.sin(Gama)*sym.cos(Alpha) - 
    0.0119985817666*sym.sin(Gama)*sym.cos(Beta) - 
    0.000185387865*sym.cos(Alpha)*sym.cos(Beta) + 
    0.0054506379328*sym.cos(Alpha)*sym.cos(Gama) - 
    0.122515129594*sym.cos(Beta)*sym.cos(Gama) + 0.200443 - (0.0560068*l1 - 0.0871109*l2 - 
    0.994623*l3 + 0.00155229010473*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) - 
    0.0110912211207*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.0071309537964*sym.sin(Alpha)*sym.sin(Gama) + 
    0.0027115009843*sym.sin(Alpha)*sym.cos(Beta) + 
    0.00099802437396*sym.sin(Alpha)*sym.cos(Gama) - 
    0.00099802437396*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0071309537964*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.030959630121*sym.sin(Beta) + 0.0110912211207*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0177238834731*sym.sin(Gama)*sym.cos(Beta) - 
    0.0017433236636*sym.cos(Alpha)*sym.cos(Beta) + 
    0.00155229010473*sym.cos(Alpha)*sym.cos(Gama) - 
    0.126638384229*sym.cos(Beta)*sym.cos(Gama) + 0.207426),0)
    Eq6 = sym.Eq(0.0560068*l1 - 0.0871109*l2 - 0.994623*l3 + 
    0.00155229010473*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) - 
    0.0110912211207*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.0071309537964*sym.sin(Alpha)*sym.sin(Gama) + 
    0.0027115009843*sym.sin(Alpha)*sym.cos(Beta) + 
    0.00099802437396*sym.sin(Alpha)*sym.cos(Gama) - 
    0.00099802437396*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0071309537964*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.030959630121*sym.sin(Beta) + 0.0110912211207*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0177238834731*sym.sin(Gama)*sym.cos(Beta) - 
    0.0017433236636*sym.cos(Alpha)*sym.cos(Beta) + 
    0.00155229010473*sym.cos(Alpha)*sym.cos(Gama) - 
    0.126638384229*sym.cos(Beta)*sym.cos(Gama) + 0.207426 - (0.0269299*l1 - 0.248258*l2 - 
    0.968319*l3 + 0.0021769371633*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) - 
    0.027521633622*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.0029854217841*sym.sin(Alpha)*sym.sin(Gama) - 
    0.0035335057656*sym.sin(Alpha)*sym.cos(Beta) + 
    0.000236144253615*sym.sin(Alpha)*sym.cos(Gama) - 
    0.000236144253615*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0029854217841*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) + 
    0.0137822779908*sym.sin(Beta) + 0.027521633622*sym.sin(Gama)*sym.cos(Alpha) + 
    0.00849104406315*sym.sin(Gama)*sym.cos(Beta) + 
    0.00038329865268*sym.cos(Alpha)*sym.cos(Beta) + 
    0.0021769371633*sym.cos(Alpha)*sym.cos(Gama) - 
    0.107346876021*sym.cos(Beta)*sym.cos(Gama) + 0.184387),0)    

I need to find out values of Alpha, Beta, Gama, l1, l2, l3, so it is necessary to work with symbols. I tried to solve but it was solving 13 hours and didn't finish.

Code is below:

    import sympy as sym
    from scipy.optimize import fsolve
    from sympy import symbols, Eq, solve
    Alpha, Beta, Gama, l1, l2, l3 = sym.symbols('Alpha, Beta, Gama, l1, l2, l3')



    Eq1 = sym.Eq(-0.945592*l1 + 0.235025*l2 + 0.224988*l3 + 
    0.0031173010925*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.031830140825*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) - 
    0.128064361336*sym.sin(Alpha)*sym.sin(Gama) + 
    0.00038524122875*sym.sin(Alpha)*sym.cos(Beta) + 
    0.0125420486104*sym.sin(Alpha)*sym.cos(Gama) - 
    0.0125420486104*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) - 
    0.128064361336*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0003687890802*sym.sin(Beta) - 0.031830140825*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0029841733356*sym.sin(Gama)*sym.cos(Beta) - 
    0.0015499671268*sym.cos(Alpha)*sym.cos(Beta) + 
    0.0031173010925*sym.cos(Alpha)*sym.cos(Gama) + 
    0.030470799804*sym.cos(Beta)*sym.cos(Gama) - 0.0685469-(-0.998117*l1 + 0.0200759*l2 - 
    0.0579618*l3 - 0.00035774651523*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.0025561238157*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) - 
    0.127083250791*sym.sin(Alpha)*sym.sin(Gama) - 
    0.0006249025393*sym.sin(Alpha)*sym.cos(Beta) - 
    0.0177861455049*sym.sin(Alpha)*sym.cos(Gama) + 
    0.0177861455049*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) - 
    0.127083250791*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0018041769486*sym.sin(Beta) - 0.0025561238157*sym.sin(Gama)*sym.cos(Alpha) + 
    0.00103286188746*sym.sin(Gama)*sym.cos(Beta) + 
    0.031068387859*sym.cos(Alpha)*sym.cos(Beta) - 
    0.00035774651523*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0073798702614*sym.cos(Beta)*sym.cos(Gama) - 0.0520369),0)
    Eq2 = sym.Eq(-0.998117*l1 + 0.0200759*l2 - 0.0579618*l3 - 
    0.00035774651523*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.0025561238157*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) - 
    0.127083250791*sym.sin(Alpha)*sym.sin(Gama) - 
    0.0006249025393*sym.sin(Alpha)*sym.cos(Beta) - 
    0.0177861455049*sym.sin(Alpha)*sym.cos(Gama) + 
    0.0177861455049*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) - 
    0.127083250791*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0018041769486*sym.sin(Beta) - 0.0025561238157*sym.sin(Gama)*sym.cos(Alpha) + 
    0.00103286188746*sym.sin(Gama)*sym.cos(Beta) + 
    0.031068387859*sym.cos(Alpha)*sym.cos(Beta) - 
    0.00035774651523*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0073798702614*sym.cos(Beta)*sym.cos(Gama) - 0.0520369 - (-0.999146*l1 + 0.023687*l2 - 
    0.0338601*l3 - 0.00020770774995*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.002625917133*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) - 
    0.110764326414*sym.sin(Alpha)*sym.sin(Gama) + 
    0.0003371418084*sym.sin(Alpha)*sym.cos(Beta) - 
    0.0087613614021*sym.sin(Alpha)*sym.cos(Gama) + 
    0.0087613614021*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) - 
    0.110764326414*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) + 
    0.00048193757532*sym.sin(Beta) - 0.002625917133*sym.sin(Gama)*sym.cos(Alpha) + 
    0.000296914137885*sym.sin(Gama)*sym.cos(Beta) - 
    0.0142210448472*sym.cos(Alpha)*sym.cos(Beta) - 
    0.00020770774995*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0037536968259*sym.cos(Beta)*sym.cos(Gama) - 0.0424406),0)
    Eq3 = sym.Eq(0.305065*l1 + 0.880846*l2 + 0.362004*l3 + 
    0.0116832770902*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.119295616318*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.041315868145*sym.sin(Alpha)*sym.sin(Gama) + 
    0.0014438387209*sym.sin(Alpha)*sym.cos(Beta) - 
    0.0040462906405*sym.sin(Alpha)*sym.cos(Gama) + 
    0.0040462906405*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.041315868145*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0005933788566*sym.sin(Beta) - 0.119295616318*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0048015124548*sym.sin(Gama)*sym.cos(Beta) + 
    0.00050004729475*sym.cos(Alpha)*sym.cos(Beta) + 
    0.0116832770902*sym.cos(Alpha)*sym.cos(Gama) + 
    0.049027287732*sym.cos(Beta)*sym.cos(Gama) - 0.612159 - (0.025017*l1 + 0.995996*l2 - 
    0.0858224*l3 - 0.0177483499212*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.126813198708*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.003185239491*sym.sin(Alpha)*sym.sin(Gama) - 
    0.031002367492*sym.sin(Alpha)*sym.cos(Beta) + 
    0.0004457954349*sym.sin(Alpha)*sym.cos(Gama) - 
    0.0004457954349*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.003185239491*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0026713938448*sym.sin(Beta) - 0.126813198708*sym.sin(Gama)*sym.cos(Alpha) + 
    0.00152932942128*sym.sin(Gama)*sym.cos(Beta) - 
    0.000778704159*sym.cos(Alpha)*sym.cos(Beta) - 
    0.0177483499212*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0109271654352*sym.cos(Beta)*sym.cos(Gama) - 0.574885),0)
    Eq4 = sym.Eq(0.025017*l1 + 0.995996*l2 - 0.0858224*l3 - 
    0.0177483499212*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.126813198708*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.003185239491*sym.sin(Alpha)*sym.sin(Gama) - 
    0.031002367492*sym.sin(Alpha)*sym.cos(Beta) + 
    0.0004457954349*sym.sin(Alpha)*sym.cos(Gama) - 
    0.0004457954349*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.003185239491*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0026713938448*sym.sin(Beta) - 0.126813198708*sym.sin(Gama)*sym.cos(Alpha) + 
    0.00152932942128*sym.sin(Gama)*sym.cos(Beta) - 
    0.000778704159*sym.cos(Alpha)*sym.cos(Beta) - 
    0.0177483499212*sym.cos(Alpha)*sym.cos(Gama) - 
    0.0109271654352*sym.cos(Beta)*sym.cos(Gama) - 0.574885 - (0.0313426*l1 + 0.968404*l2 - 
    0.247408*l3 - 0.0084917894154*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.107356299036*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.0034746092934*sym.sin(Alpha)*sym.sin(Gama) + 
    0.0137834878128*sym.sin(Alpha)*sym.cos(Beta) + 
    0.00027483855801*sym.sin(Alpha)*sym.cos(Gama) - 
    0.00027483855801*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0034746092934*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) + 
    0.0035214075456*sym.sin(Beta) - 0.107356299036*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0021694836408*sym.sin(Gama)*sym.cos(Beta) + 
    0.00044610549432*sym.cos(Alpha)*sym.cos(Beta) - 
    0.0084917894154*sym.cos(Alpha)*sym.cos(Gama) - 
    0.027427403472*sym.cos(Beta)*sym.cos(Gama) - 0.507045),0)
    Eq5 = sym.Eq(-0.1131*l1 + 0.410944*l2 - 0.904618*l3 + 
    0.0054506379328*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) + 
    0.055655378752*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) - 
    0.0153174723*sym.sin(Alpha)*sym.sin(Gama) + 0.0006735988576*sym.sin(Alpha)*sym.cos(Beta) 
    + 0.00150012447*sym.sin(Alpha)*sym.cos(Gama) - 
    0.00150012447*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) - 
    0.0153174723*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) + 0.0014828045947*sym.sin(Beta) 
    - 0.055655378752*sym.sin(Gama)*sym.cos(Alpha) - 
    0.0119985817666*sym.sin(Gama)*sym.cos(Beta) - 
    0.000185387865*sym.cos(Alpha)*sym.cos(Beta) + 
    0.0054506379328*sym.cos(Alpha)*sym.cos(Gama) - 
    0.122515129594*sym.cos(Beta)*sym.cos(Gama) + 0.200443 - (0.0560068*l1 - 0.0871109*l2 - 
    0.994623*l3 + 0.00155229010473*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) - 
    0.0110912211207*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.0071309537964*sym.sin(Alpha)*sym.sin(Gama) + 
    0.0027115009843*sym.sin(Alpha)*sym.cos(Beta) + 
    0.00099802437396*sym.sin(Alpha)*sym.cos(Gama) - 
    0.00099802437396*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0071309537964*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.030959630121*sym.sin(Beta) + 0.0110912211207*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0177238834731*sym.sin(Gama)*sym.cos(Beta) - 
    0.0017433236636*sym.cos(Alpha)*sym.cos(Beta) + 
    0.00155229010473*sym.cos(Alpha)*sym.cos(Gama) - 
    0.126638384229*sym.cos(Beta)*sym.cos(Gama) + 0.207426),0)
    Eq6 = sym.Eq(0.0560068*l1 - 0.0871109*l2 - 0.994623*l3 + 
    0.00155229010473*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) - 
    0.0110912211207*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.0071309537964*sym.sin(Alpha)*sym.sin(Gama) + 
    0.0027115009843*sym.sin(Alpha)*sym.cos(Beta) + 
    0.00099802437396*sym.sin(Alpha)*sym.cos(Gama) - 
    0.00099802437396*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0071309537964*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) - 
    0.030959630121*sym.sin(Beta) + 0.0110912211207*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0177238834731*sym.sin(Gama)*sym.cos(Beta) - 
    0.0017433236636*sym.cos(Alpha)*sym.cos(Beta) + 
    0.00155229010473*sym.cos(Alpha)*sym.cos(Gama) - 
    0.126638384229*sym.cos(Beta)*sym.cos(Gama) + 0.207426 - (0.0269299*l1 - 0.248258*l2 - 
    0.968319*l3 + 0.0021769371633*sym.sin(Alpha)*sym.sin(Beta)*sym.sin(Gama) - 
    0.027521633622*sym.sin(Alpha)*sym.sin(Beta)*sym.cos(Gama) + 
    0.0029854217841*sym.sin(Alpha)*sym.sin(Gama) - 
    0.0035335057656*sym.sin(Alpha)*sym.cos(Beta) + 
    0.000236144253615*sym.sin(Alpha)*sym.cos(Gama) - 
    0.000236144253615*sym.sin(Beta)*sym.sin(Gama)*sym.cos(Alpha) + 
    0.0029854217841*sym.sin(Beta)*sym.cos(Alpha)*sym.cos(Gama) + 
    0.0137822779908*sym.sin(Beta) + 0.027521633622*sym.sin(Gama)*sym.cos(Alpha) + 
    0.00849104406315*sym.sin(Gama)*sym.cos(Beta) + 
    0.00038329865268*sym.cos(Alpha)*sym.cos(Beta) + 
    0.0021769371633*sym.cos(Alpha)*sym.cos(Gama) - 
    0.107346876021*sym.cos(Beta)*sym.cos(Gama) + 0.184387),0)    

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

韶华倾负 2025-02-10 15:14:59

Sympy中的solve函数用于查找精确的分析解决方案,但对于您的方程式系统来说,这些函数可能非常复杂。您可以使用Sympy的nSolve函数,如果您只需要使用数值解决方案:

In [140]: from sympy import nsolve

In [141]: eqs = [Eq1, Eq2, Eq3, Eq4, Eq5, Eq6]

In [142]: nsolve(eqs, [l1, l2, l3, Alpha, Beta, Gama], [1, 1, 1, 1, 1, 1])
Out[142]: 
⎡-0.557604943463198⎤
⎢                  ⎥
⎢-0.300586875967959⎥
⎢                  ⎥
⎢0.383995113825599 ⎥
⎢                  ⎥
⎢ 3.21607797653942 ⎥
⎢                  ⎥
⎢-1.51886308101428 ⎥
⎢                  ⎥
⎣ 2.40460861693647 ⎦

请注意,方程中可能还有其他可能的解决方案,因此,如果您需要找到与显示的解决方案不同的解决方案不同的初始猜测(以外的其他猜测[1,1,1,1,1,1])。

The solve function in SymPy is for finding exact analytic solutions but those are likely to be very complicated for your system of equations. You can use SymPy's nsolve function if you just want a numerical solution:

In [140]: from sympy import nsolve

In [141]: eqs = [Eq1, Eq2, Eq3, Eq4, Eq5, Eq6]

In [142]: nsolve(eqs, [l1, l2, l3, Alpha, Beta, Gama], [1, 1, 1, 1, 1, 1])
Out[142]: 
⎡-0.557604943463198⎤
⎢                  ⎥
⎢-0.300586875967959⎥
⎢                  ⎥
⎢0.383995113825599 ⎥
⎢                  ⎥
⎢ 3.21607797653942 ⎥
⎢                  ⎥
⎢-1.51886308101428 ⎥
⎢                  ⎥
⎣ 2.40460861693647 ⎦

Note that there can be other possible solutions to the equations so if you need to find a different solution than the one shown then you should use a different initial guess (something other than [1,1,1,1,1,1]).

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文