在指定的列上操作numcolwise
我正在使用大型越野面板数据。这是我的数据示例:
df <- structure(list(country = c("Argentina", "Argentina", "Argentina",
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina",
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina",
"Argentina", "Argentina", "Brazil", "Brazil", "Brazil", "Brazil",
"Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil",
"Brazil", "Brazil", "Brazil", "Brazil"), year = c(1991, 1992,
1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005), lnunderval = c(-0.942018220566855,
-0.885848248127534, -0.766349222095516, -0.690487190951407, -0.521023028925771,
-0.288557433912095, -0.351488637772915, -0.393048184068511, -0.444123691025518,
-0.512425182981147, -0.541182815398097, 0.379018666505875, 0.291852440172936,
0.291407056285245, 0.221426753100227, -0.120418577004832, 0.00467960055625634,
-0.0190735963658737, -0.239570582118898, -0.316748349307701,
-0.205418347557874, -0.301707274202926, -0.346946676711871, -0.0528811487098006,
-0.178001370772517, -0.0404491572081528, 0.0898307782259906,
0.0835291098039626, 0.0349739055576117, -0.187321483795299),
manu_GDP = c(24.3864490932335, 21.8591315586603, 18.2399115325496,
17.8190917106899, 17.2467521148076, 17.5357232920479, 18.227905749866,
17.8379584760908, 16.9615250614589, 16.4942719439838, 16.0932258763829,
20.347773913878, 22.4867505875749, 18.9370136214371, 18.340415936715,
21.8391379495813, 23.3085986320751, 26.0497364463813, 23.7212337008806,
14.5422791544751, 13.0671912367218, 13.0186253732125, 12.1551371940101,
12.3085333305115, 13.134659593552, 13.0895379354001, 12.3569626673735,
14.4507645630532, 15.0995301563871, 14.7382811342998), income = c("Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income"), period = structure(c(1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L), .Label = c("(1990,1995]",
"(1995,2000]", "(2000,2005]"), class = "factor")), row.names = c(NA,
-30L), class = c("tbl_df", "tbl", "data.frame"))
我使用剪切和ddply函数如下创建了我的变量的五年非重叠平均值。
df$period <- cut(df$year, seq(1990, 2005, 5)) #this periodizes data
df <- ddply(df, .(country, period), numcolwise(mean))
该代码的问题在于,命名收入的非数字列丢失。我已经尝试了以下操作,但它不起作用。
df <- ddply(df, .(country, period), numcolwise(mean,.(lnunderval, manu_GDP)))
Error in mean.default(X[[i]], ...) : 'trim' must be numeric of length one
我想最终数据集包含未平均的非数字列。是否有一种方法可以在指定的一组列上应用NumColwise函数?
我希望最终的输出看起来像这样:
structure(list(country = c("Argentina", "Argentina", "Argentina",
"Brazil", "Brazil", "Brazil"), period = structure(c(1L, 2L, 3L,
1L, 2L, 3L), .Label = c("(1990,1995]", "(1995,2000]", "(2000,2005]"
), class = "factor"), year = c(1993, 1998, 2003, 1993, 1998,
2003), lnunderval = c(-0.761145182133417, -0.397928625952037,
0.128504420133237, -0.13822630084821, -0.216990963590998, -0.00388736948317731
), manu_GDP = c(19.9102672019882, 17.4114769046895, 19.2410359871976,
21.8921971766787, 12.7368293456016, 13.9470152913027), income = c("Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income")), class = "data.frame", row.names = c(NA,
-6L))
I am working with a large cross country panel data. Here is a sample of my data:
df <- structure(list(country = c("Argentina", "Argentina", "Argentina",
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina",
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina",
"Argentina", "Argentina", "Brazil", "Brazil", "Brazil", "Brazil",
"Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil",
"Brazil", "Brazil", "Brazil", "Brazil"), year = c(1991, 1992,
1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005), lnunderval = c(-0.942018220566855,
-0.885848248127534, -0.766349222095516, -0.690487190951407, -0.521023028925771,
-0.288557433912095, -0.351488637772915, -0.393048184068511, -0.444123691025518,
-0.512425182981147, -0.541182815398097, 0.379018666505875, 0.291852440172936,
0.291407056285245, 0.221426753100227, -0.120418577004832, 0.00467960055625634,
-0.0190735963658737, -0.239570582118898, -0.316748349307701,
-0.205418347557874, -0.301707274202926, -0.346946676711871, -0.0528811487098006,
-0.178001370772517, -0.0404491572081528, 0.0898307782259906,
0.0835291098039626, 0.0349739055576117, -0.187321483795299),
manu_GDP = c(24.3864490932335, 21.8591315586603, 18.2399115325496,
17.8190917106899, 17.2467521148076, 17.5357232920479, 18.227905749866,
17.8379584760908, 16.9615250614589, 16.4942719439838, 16.0932258763829,
20.347773913878, 22.4867505875749, 18.9370136214371, 18.340415936715,
21.8391379495813, 23.3085986320751, 26.0497364463813, 23.7212337008806,
14.5422791544751, 13.0671912367218, 13.0186253732125, 12.1551371940101,
12.3085333305115, 13.134659593552, 13.0895379354001, 12.3569626673735,
14.4507645630532, 15.0995301563871, 14.7382811342998), income = c("Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income"), period = structure(c(1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L), .Label = c("(1990,1995]",
"(1995,2000]", "(2000,2005]"), class = "factor")), row.names = c(NA,
-30L), class = c("tbl_df", "tbl", "data.frame"))
I created five-year non-overlapping averages of my variables using cut and ddply functions as below.
df$period <- cut(df$year, seq(1990, 2005, 5)) #this periodizes data
df <- ddply(df, .(country, period), numcolwise(mean))
The problem with this code is that the non-numeric column named income is lost. I've tried the following but it did not work.
df <- ddply(df, .(country, period), numcolwise(mean,.(lnunderval, manu_GDP)))
Error in mean.default(X[[i]], ...) : 'trim' must be numeric of length one
I would like to final dataset to contain non-numeric columns that are not averaged. Is there a way of applying the numcolwise function on a specified set of columns?
I would like the final output to look like this:
structure(list(country = c("Argentina", "Argentina", "Argentina",
"Brazil", "Brazil", "Brazil"), period = structure(c(1L, 2L, 3L,
1L, 2L, 3L), .Label = c("(1990,1995]", "(1995,2000]", "(2000,2005]"
), class = "factor"), year = c(1993, 1998, 2003, 1993, 1998,
2003), lnunderval = c(-0.761145182133417, -0.397928625952037,
0.128504420133237, -0.13822630084821, -0.216990963590998, -0.00388736948317731
), manu_GDP = c(19.9102672019882, 17.4114769046895, 19.2410359871976,
21.8921971766787, 12.7368293456016, 13.9470152913027), income = c("Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income")), class = "data.frame", row.names = c(NA,
-6L))
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我们可以使用
dplyr
,它在 to的 多个具有不同功能的列块中更灵活
We may use
dplyr
which is more flexible withacross
tosummarise
multiple blocks of columns with different functions