如何使用boto3将文件或数据写入S3对象

发布于 2025-02-03 09:26:18 字数 944 浏览 3 评论 0 原文

在BOTO 2中,您可以使用以下方法写入S3对象:

是否有boto 3等效?将数据保存到存储在S3上的对象的BOTO3方法是什么?

In boto 2, you can write to an S3 object using these methods:

Is there a boto 3 equivalent? What is the boto3 method for saving data to an object stored on S3?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(8

情栀口红 2025-02-10 09:26:18

在boto 3中,'key.set_contents_from_'方法被

import boto3

some_binary_data = b'Here we have some data'
more_binary_data = b'Here we have some more data'

# Method 1: Object.put()
s3 = boto3.resource('s3')
object = s3.Object('my_bucket_name', 'my/key/including/filename.txt')
object.put(Body=some_binary_data)

# Method 2: Client.put_object()
client = boto3.client('s3')
client.put_object(Body=more_binary_data, Bucket='my_bucket_name', Key='my/key/including/anotherfilename.txt')

另外,二进制数据可以来自读取文件,如官方文档比较Boto 2和Boto 3

存储数据

从文件,流或字符串中存储数据很容易:

 #boto 2.x
来自boto.s3.关键导入密钥
键=键('Hello.txt')
key.set_contents_from_file('/tmp/hello.txt')

#Boto 3
s3.Object('mybucket','hello.txt')。put(body = open('/tmp/hello.txt','rb'))
 

In boto 3, the 'Key.set_contents_from_' methods were replaced by

For example:

import boto3

some_binary_data = b'Here we have some data'
more_binary_data = b'Here we have some more data'

# Method 1: Object.put()
s3 = boto3.resource('s3')
object = s3.Object('my_bucket_name', 'my/key/including/filename.txt')
object.put(Body=some_binary_data)

# Method 2: Client.put_object()
client = boto3.client('s3')
client.put_object(Body=more_binary_data, Bucket='my_bucket_name', Key='my/key/including/anotherfilename.txt')

Alternatively, the binary data can come from reading a file, as described in the official docs comparing boto 2 and boto 3:

Storing Data

Storing data from a file, stream, or string is easy:

# Boto 2.x
from boto.s3.key import Key
key = Key('hello.txt')
key.set_contents_from_file('/tmp/hello.txt')

# Boto 3
s3.Object('mybucket', 'hello.txt').put(Body=open('/tmp/hello.txt', 'rb'))
只是我以为 2025-02-10 09:26:18

boto3还具有直接上传文件的方法:

s3 = boto3.resource('s3')    
s3.Bucket('bucketname').upload_file('/local/file/here.txt','folder/sub/path/to/s3key')

boto3 also has a method for uploading a file directly:

s3 = boto3.resource('s3')    
s3.Bucket('bucketname').upload_file('/local/file/here.txt','folder/sub/path/to/s3key')

http://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Bucket.upload_file

删除→记忆 2025-02-10 09:26:18

在写入S3中的文件之前,您不再需要将内容转换为二进制文件。以下示例在带有字符串内容的S3存储桶中创建一个新的文本文件(称为newfile.txt):

import boto3

s3 = boto3.resource(
    's3',
    region_name='us-east-1',
    aws_access_key_id=KEY_ID,
    aws_secret_access_key=ACCESS_KEY
)
content="String content to write to a new S3 file"
s3.Object('my-bucket-name', 'newfile.txt').put(Body=content)

You no longer have to convert the contents to binary before writing to the file in S3. The following example creates a new text file (called newfile.txt) in an S3 bucket with string contents:

import boto3

s3 = boto3.resource(
    's3',
    region_name='us-east-1',
    aws_access_key_id=KEY_ID,
    aws_secret_access_key=ACCESS_KEY
)
content="String content to write to a new S3 file"
s3.Object('my-bucket-name', 'newfile.txt').put(Body=content)
风月客 2025-02-10 09:26:18

这是从S3读取JSON的一个不错的技巧:

import json, boto3
s3 = boto3.resource("s3").Bucket("bucket")
json.load_s3 = lambda f: json.load(s3.Object(key=f).get()["Body"])
json.dump_s3 = lambda obj, f: s3.Object(key=f).put(Body=json.dumps(obj))

现在您可以使用 JSON.LOAD_S3 JSON.DUMP_S3 ,使用相同的API与 load> load 和<代码>转储

data = {"test":0}
json.dump_s3(data, "key") # saves json to s3://bucket/key
data = json.load_s3("key") # read json from s3://bucket/key

Here's a nice trick to read JSON from s3:

import json, boto3
s3 = boto3.resource("s3").Bucket("bucket")
json.load_s3 = lambda f: json.load(s3.Object(key=f).get()["Body"])
json.dump_s3 = lambda obj, f: s3.Object(key=f).put(Body=json.dumps(obj))

Now you can use json.load_s3 and json.dump_s3 with the same API as load and dump

data = {"test":0}
json.dump_s3(data, "key") # saves json to s3://bucket/key
data = json.load_s3("key") # read json from s3://bucket/key
一城柳絮吹成雪 2025-02-10 09:26:18

我用来即可随时将文件上传到给定的S3存储桶和sub-folder- note 的清洁版本

import boto3

BUCKET_NAME = 'sample_bucket_name'
PREFIX = 'sub-folder/'

s3 = boto3.resource('s3')

# Creating an empty file called "_DONE" and putting it in the S3 bucket
s3.Object(BUCKET_NAME, PREFIX + '_DONE').put(Body="")

:您应该始终将AWS凭据放置( aws_access_key_id aws_secret_access_key )在单独的文件中,例如 - 〜/.aws/.aws/corterentials

A cleaner and concise version which I use to upload files on the fly to a given S3 bucket and sub-folder-

import boto3

BUCKET_NAME = 'sample_bucket_name'
PREFIX = 'sub-folder/'

s3 = boto3.resource('s3')

# Creating an empty file called "_DONE" and putting it in the S3 bucket
s3.Object(BUCKET_NAME, PREFIX + '_DONE').put(Body="")

Note: You should ALWAYS put your AWS credentials (aws_access_key_id and aws_secret_access_key) in a separate file, for example- ~/.aws/credentials

巷雨优美回忆 2025-02-10 09:26:18

经过一些研究,我发现了这个。可以使用简单的CSV作者来实现它。它是直接将CSV的字典写入S3存储桶。

例如:data_dict = [{“ key1”:“ value1”,“ key2”:“ value2”},{“ key1”:“ value4”,“ key2”:“ value3”}]]
假设所有字典中的键都是均匀的。

import csv
import boto3

# Sample input dictionary
data_dict = [{"Key1": "value1", "Key2": "value2"}, {"Key1": "value4", "Key2": "value3"}]
data_dict_keys = data_dict[0].keys()

# creating a file buffer
file_buff = StringIO()
# writing csv data to file buffer
writer = csv.DictWriter(file_buff, fieldnames=data_dict_keys)
writer.writeheader()
for data in data_dict:
    writer.writerow(data)
# creating s3 client connection
client = boto3.client('s3')
# placing file to S3, file_buff.getvalue() is the CSV body for the file
client.put_object(Body=file_buff.getvalue(), Bucket='my_bucket_name', Key='my/key/including/anotherfilename.txt')

After some research, I found this. It can be achieved using a simple csv writer. It is to write a dictionary to CSV directly to S3 bucket.

eg: data_dict = [{"Key1": "value1", "Key2": "value2"}, {"Key1": "value4", "Key2": "value3"}]
assuming that the keys in all the dictionary are uniform.

import csv
import boto3

# Sample input dictionary
data_dict = [{"Key1": "value1", "Key2": "value2"}, {"Key1": "value4", "Key2": "value3"}]
data_dict_keys = data_dict[0].keys()

# creating a file buffer
file_buff = StringIO()
# writing csv data to file buffer
writer = csv.DictWriter(file_buff, fieldnames=data_dict_keys)
writer.writeheader()
for data in data_dict:
    writer.writerow(data)
# creating s3 client connection
client = boto3.client('s3')
# placing file to S3, file_buff.getvalue() is the CSV body for the file
client.put_object(Body=file_buff.getvalue(), Bucket='my_bucket_name', Key='my/key/including/anotherfilename.txt')
甜尕妞 2025-02-10 09:26:18

值得一提的是 smart-open 使用 boto3 作为back-结尾。

smart-open 是可以从 s3 以及 ftp open 的倒入替换。 >, HTTP 和许多其他协议。

例如

from smart_open import open
import json
with open("s3://your_bucket/your_key.json", 'r') as f:
    data = json.load(f)

,AWS凭据通过〜/.aws/ dir或环境变量中的文件。

it is worth mentioning smart-open that uses boto3 as a back-end.

smart-open is a drop-in replacement for python's open that can open files from s3, as well as ftp, http and many other protocols.

for example

from smart_open import open
import json
with open("s3://your_bucket/your_key.json", 'r') as f:
    data = json.load(f)

The aws credentials are loaded via boto3 credentials, usually a file in the ~/.aws/ dir or an environment variable.

︶葆Ⅱㄣ 2025-02-10 09:26:18

您可以使用以下代码来编写,例如2019年对S3的图像。要能够连接到S3,您必须使用命令 pip install awscli awscli 安装AWS CLI,然后使用一些凭据使用几个凭据命令 AWS配置

import urllib3
import uuid
from pathlib import Path
from io import BytesIO
from errors import custom_exceptions as cex

BUCKET_NAME = "xxx.yyy.zzz"
POSTERS_BASE_PATH = "assets/wallcontent"
CLOUDFRONT_BASE_URL = "https://xxx.cloudfront.net/"


class S3(object):
    def __init__(self):
        self.client = boto3.client('s3')
        self.bucket_name = BUCKET_NAME
        self.posters_base_path = POSTERS_BASE_PATH

    def __download_image(self, url):
        manager = urllib3.PoolManager()
        try:
            res = manager.request('GET', url)
        except Exception:
            print("Could not download the image from URL: ", url)
            raise cex.ImageDownloadFailed
        return BytesIO(res.data)  # any file-like object that implements read()

    def upload_image(self, url):
        try:
            image_file = self.__download_image(url)
        except cex.ImageDownloadFailed:
            raise cex.ImageUploadFailed

        extension = Path(url).suffix
        id = uuid.uuid1().hex + extension
        final_path = self.posters_base_path + "/" + id
        try:
            self.client.upload_fileobj(image_file,
                                       self.bucket_name,
                                       final_path
                                       )
        except Exception:
            print("Image Upload Error for URL: ", url)
            raise cex.ImageUploadFailed

        return CLOUDFRONT_BASE_URL + id

You may use the below code to write, for example an image to S3 in 2019. To be able to connect to S3 you will have to install AWS CLI using command pip install awscli, then enter few credentials using command aws configure:

import urllib3
import uuid
from pathlib import Path
from io import BytesIO
from errors import custom_exceptions as cex

BUCKET_NAME = "xxx.yyy.zzz"
POSTERS_BASE_PATH = "assets/wallcontent"
CLOUDFRONT_BASE_URL = "https://xxx.cloudfront.net/"


class S3(object):
    def __init__(self):
        self.client = boto3.client('s3')
        self.bucket_name = BUCKET_NAME
        self.posters_base_path = POSTERS_BASE_PATH

    def __download_image(self, url):
        manager = urllib3.PoolManager()
        try:
            res = manager.request('GET', url)
        except Exception:
            print("Could not download the image from URL: ", url)
            raise cex.ImageDownloadFailed
        return BytesIO(res.data)  # any file-like object that implements read()

    def upload_image(self, url):
        try:
            image_file = self.__download_image(url)
        except cex.ImageDownloadFailed:
            raise cex.ImageUploadFailed

        extension = Path(url).suffix
        id = uuid.uuid1().hex + extension
        final_path = self.posters_base_path + "/" + id
        try:
            self.client.upload_fileobj(image_file,
                                       self.bucket_name,
                                       final_path
                                       )
        except Exception:
            print("Image Upload Error for URL: ", url)
            raise cex.ImageUploadFailed

        return CLOUDFRONT_BASE_URL + id
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文