输入类型(mpsfloattype)和重量类型(Torch.floattensor)应相同
我正在尝试运行此
libs Freeze:
>pip3 freeze
anyio @ file:///private/tmp/jupyterlab--anyio-20211211-70040-1yv1wmx/anyio-3.4.0
appnope==0.1.2
argon2-cffi @ file:///private/tmp/jupyterlab--argon2-cffi-20211211-70040-1er07d0/argon2-cffi-21.2.0
argon2-cffi-bindings @ file:///private/tmp/jupyterlab--argon2-cffi-bindings-20211211-70040-o64kwi/argon2-cffi-bindings-21.2.0
asttokens==2.0.5
attrs @ file:///private/tmp/jupyterlab--attrs-20211211-70040-6u3qxt/attrs-21.2.0
Babel==2.9.1
backcall @ file:///private/tmp/jupyterlab--backcall-20211211-70040-acdr42/backcall-0.2.0
beniget==0.4.1
black==21.12b0
bleach==4.1.0
certifi==2022.5.18.1
cffi==1.15.0
charset-normalizer==2.0.12
click==8.0.3
cycler==0.10.0
Cython==0.29.24
debugpy @ file:///private/tmp/jupyterlab--debugpy-20211211-70040-2j9lay/debugpy-1.5.1
decorator==5.1.0
defusedxml @ file:///private/tmp/jupyterlab--defusedxml-20211211-70040-uowur4/defusedxml-0.7.1
entrypoints @ file:///private/tmp/jupyterlab--entrypoints-20211211-70040-1r2y5g4/entrypoints-0.3
et-xmlfile==1.1.0
executing==0.8.2
finnhub-python==2.4.5
gast==0.5.2
GDAL==3.4.0
gensim==4.1.2
graphviz==0.19.1
idna==3.3
imageio==2.13.5
ipykernel==6.6.0
ipython==7.30.1
ipython-genutils==0.2.0
ipywidgets==7.6.5
jedi==0.18.1
Jinja2==3.0.3
joblib==1.1.0
json5==0.9.6
jsonschema @ file:///private/tmp/jupyterlab--jsonschema-20211211-70040-1np642r/jsonschema-4.2.1
jupyter==1.0.0
jupyter-client==7.1.0
jupyter-console==6.4.0
jupyter-core==4.9.1
jupyter-server @ file:///private/tmp/jupyterlab--jupyter-server-20211211-70040-1u7h7vl/jupyter_server-1.13.1
jupyterlab @ file:///private/tmp/jupyterlab-20211211-70040-1ltrjpx/jupyterlab-3.2.5
jupyterlab-pygments==0.1.2
jupyterlab-server @ file:///private/tmp/jupyterlab--jupyterlab-server-20211211-70040-iufjhi/jupyterlab_server-2.8.2
jupyterlab-widgets==1.0.2
kiwisolver==1.3.2
lxml==4.6.3
MarkupSafe==2.0.1
matplotlib==3.4.3
matplotlib-inline==0.1.3
midi @ git+https://github.com/vishnubob/python-midi.git@abb85028c97b433f74621be899a0b399cd100aaa
midi-to-dataframe @ git+https://github.com/TaylorPeer/midi-to-dataframe@35347f787f01a2326234ad278d8c40bee3817f1d
mido==1.2.10
mistune==0.8.4
multitasking==0.0.9
mypy-extensions==0.4.3
nbclassic @ file:///private/tmp/jupyterlab--nbclassic-20211211-70040-1fah2fe/nbclassic-0.3.4
nbclient @ file:///private/tmp/jupyterlab--nbclient-20211211-70040-ptwp5d/nbclient-0.5.9
nbconvert==6.3.0
nbformat==5.1.3
nest-asyncio @ file:///private/tmp/jupyterlab--nest-asyncio-20211211-70040-72pz5e/nest_asyncio-1.5.4
networkx==2.6.3
notebook==6.4.6
numpy==1.23.0rc1
openpyxl==3.0.9
packaging @ file:///private/tmp/jupyterlab--packaging-20211211-70040-1f14ddt/packaging-21.3
pandas==1.4.2
pandocfilters==1.5.0
parso==0.8.3
pathspec==0.9.0
pexpect==4.8.0
pickleshare==0.7.5
Pillow==9.1.1
platformdirs==2.4.1
ply==3.11
prometheus-client==0.12.0
prompt-toolkit @ file:///private/tmp/jupyterlab--prompt-toolkit-20211211-70040-hcpjwc/prompt_toolkit-3.0.24
ptyprocess @ file:///private/tmp/jupyterlab--ptyprocess-20211211-70040-wjbvpa/ptyprocess-0.7.0
pure-eval==0.2.1
pybind11==2.8.0
pycparser==2.21
Pygments==2.10.0
pyparsing==3.0.6
pyrsistent @ file:///private/tmp/jupyterlab--pyrsistent-20211211-70040-1fnadg/pyrsistent-0.18.0
python-dateutil==2.8.2
pythran==0.10.0
pytz==2022.1
PyWavelets==1.2.0
PyYAML==6.0
pyzmq @ file:///private/tmp/jupyterlab--pyzmq-20211211-70040-2xtuon/pyzmq-22.3.0
qtconsole==5.2.2
QtPy==2.0.0
requests==2.27.1
scikit-image==0.19.1
scikit-learn==1.1.dev0
scipy==1.8.1
seaborn==0.11.2
Send2Trash==1.8.0
six==1.16.0
smart-open==5.2.1
sniffio @ file:///private/tmp/jupyterlab--sniffio-20211211-70040-wu3dri/sniffio-1.2.0
squarify==0.4.3
stack-data==0.1.4
terminado @ file:///private/tmp/jupyterlab--terminado-20211211-70040-dw1vl6/terminado-0.12.1
testpath @ file:///private/tmp/jupyterlab--testpath-20211211-70040-895z1/testpath-0.5.0
threadpoolctl==3.0.0
tifffile==2021.11.2
tomli==1.2.3
torch==1.13.0.dev20220528
torchaudio==0.11.0
torchsummary==1.5.1
torchtext==0.10.0
torchvision==0.14.0a0+f0f8a3c
torchviz==0.0.2
tornado==6.1
tqdm==4.62.3
traitlets @ file:///private/tmp/jupyterlab--traitlets-20211211-70040-ru76xv/traitlets-5.1.1
typing_extensions==4.2.0
urllib3==1.26.9
wcwidth==0.2.5
webencodings==0.5.1
websocket-client==1.2.3
wget==3.2
widgetsnbextension==3.5.2
yfinance==0.1.64
在代码中,AM设置device = Torch.device('MPS')
在此行中:history = [evaliate(deasuate) ,有效_dl)]
AM获取运行时错误
输入类型(MPSFloatType)和权重类型(Torch.floattensor)应该是相同的
跟踪:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<timed exec> in <module>
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/autograd/grad_mode.py in decorate_context(*args, **kwargs)
25 def decorate_context(*args, **kwargs):
26 with self.clone():
---> 27 return func(*args, **kwargs)
28 return cast(F, decorate_context)
29
/var/folders/mz/qfpvpvf550s039lrnxg70whh0000gn/T/ipykernel_11483/1143432410.py in evaluate(model, val_loader)
3 def evaluate(model, val_loader):
4 model.eval()
----> 5 outputs = [model.validation_step(batch) for batch in val_loader]
6 return model.validation_epoch_end(outputs)
7
/var/folders/mz/qfpvpvf550s039lrnxg70whh0000gn/T/ipykernel_11483/1143432410.py in <listcomp>(.0)
3 def evaluate(model, val_loader):
4 model.eval()
----> 5 outputs = [model.validation_step(batch) for batch in val_loader]
6 return model.validation_epoch_end(outputs)
7
/var/folders/mz/qfpvpvf550s039lrnxg70whh0000gn/T/ipykernel_11483/446280773.py in validation_step(self, batch)
16 def validation_step(self, batch):
17 images, labels = batch
---> 18 out = self(images) # Generate prediction
19 loss = F.cross_entropy(out, labels) # Calculate loss
20 acc = accuracy(out, labels) # Calculate accuracy
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1129 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130 return forward_call(*input, **kwargs)
1131 # Do not call functions when jit is used
1132 full_backward_hooks, non_full_backward_hooks = [], []
/var/folders/mz/qfpvpvf550s039lrnxg70whh0000gn/T/ipykernel_11483/3789274317.py in forward(self, xb)
29
30 def forward(self, xb): # xb is the loaded batch
---> 31 out = self.conv1(xb)
32 out = self.conv2(out)
33 out = self.res1(out) + out
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1129 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130 return forward_call(*input, **kwargs)
1131 # Do not call functions when jit is used
1132 full_backward_hooks, non_full_backward_hooks = [], []
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/container.py in forward(self, input)
137 def forward(self, input):
138 for module in self:
--> 139 input = module(input)
140 return input
141
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1129 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130 return forward_call(*input, **kwargs)
1131 # Do not call functions when jit is used
1132 full_backward_hooks, non_full_backward_hooks = [], []
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/conv.py in forward(self, input)
457
458 def forward(self, input: Tensor) -> Tensor:
--> 459 return self._conv_forward(input, self.weight, self.bias)
460
461 class Conv3d(_ConvNd):
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/conv.py in _conv_forward(self, input, weight, bias)
453 weight, bias, self.stride,
454 _pair(0), self.dilation, self.groups)
--> 455 return F.conv2d(input, weight, bias, self.stride,
456 self.padding, self.dilation, self.groups)
457
RuntimeError: Input type (MPSFloatType) and weight type (torch.FloatTensor) should be the same
MPS仍然是新的,并且正在尝试找出原因在这里,欢迎任何建议, 如果将火炬设备设置为CPU,则代码运行正常 - 只需花费太多时间。
谢谢, 深卡马尔·辛格
I am trying to run this notebook on Apple M1 (1st gen) running MacOS 12.4,
libs freeze:
>pip3 freeze
anyio @ file:///private/tmp/jupyterlab--anyio-20211211-70040-1yv1wmx/anyio-3.4.0
appnope==0.1.2
argon2-cffi @ file:///private/tmp/jupyterlab--argon2-cffi-20211211-70040-1er07d0/argon2-cffi-21.2.0
argon2-cffi-bindings @ file:///private/tmp/jupyterlab--argon2-cffi-bindings-20211211-70040-o64kwi/argon2-cffi-bindings-21.2.0
asttokens==2.0.5
attrs @ file:///private/tmp/jupyterlab--attrs-20211211-70040-6u3qxt/attrs-21.2.0
Babel==2.9.1
backcall @ file:///private/tmp/jupyterlab--backcall-20211211-70040-acdr42/backcall-0.2.0
beniget==0.4.1
black==21.12b0
bleach==4.1.0
certifi==2022.5.18.1
cffi==1.15.0
charset-normalizer==2.0.12
click==8.0.3
cycler==0.10.0
Cython==0.29.24
debugpy @ file:///private/tmp/jupyterlab--debugpy-20211211-70040-2j9lay/debugpy-1.5.1
decorator==5.1.0
defusedxml @ file:///private/tmp/jupyterlab--defusedxml-20211211-70040-uowur4/defusedxml-0.7.1
entrypoints @ file:///private/tmp/jupyterlab--entrypoints-20211211-70040-1r2y5g4/entrypoints-0.3
et-xmlfile==1.1.0
executing==0.8.2
finnhub-python==2.4.5
gast==0.5.2
GDAL==3.4.0
gensim==4.1.2
graphviz==0.19.1
idna==3.3
imageio==2.13.5
ipykernel==6.6.0
ipython==7.30.1
ipython-genutils==0.2.0
ipywidgets==7.6.5
jedi==0.18.1
Jinja2==3.0.3
joblib==1.1.0
json5==0.9.6
jsonschema @ file:///private/tmp/jupyterlab--jsonschema-20211211-70040-1np642r/jsonschema-4.2.1
jupyter==1.0.0
jupyter-client==7.1.0
jupyter-console==6.4.0
jupyter-core==4.9.1
jupyter-server @ file:///private/tmp/jupyterlab--jupyter-server-20211211-70040-1u7h7vl/jupyter_server-1.13.1
jupyterlab @ file:///private/tmp/jupyterlab-20211211-70040-1ltrjpx/jupyterlab-3.2.5
jupyterlab-pygments==0.1.2
jupyterlab-server @ file:///private/tmp/jupyterlab--jupyterlab-server-20211211-70040-iufjhi/jupyterlab_server-2.8.2
jupyterlab-widgets==1.0.2
kiwisolver==1.3.2
lxml==4.6.3
MarkupSafe==2.0.1
matplotlib==3.4.3
matplotlib-inline==0.1.3
midi @ git+https://github.com/vishnubob/python-midi.git@abb85028c97b433f74621be899a0b399cd100aaa
midi-to-dataframe @ git+https://github.com/TaylorPeer/midi-to-dataframe@35347f787f01a2326234ad278d8c40bee3817f1d
mido==1.2.10
mistune==0.8.4
multitasking==0.0.9
mypy-extensions==0.4.3
nbclassic @ file:///private/tmp/jupyterlab--nbclassic-20211211-70040-1fah2fe/nbclassic-0.3.4
nbclient @ file:///private/tmp/jupyterlab--nbclient-20211211-70040-ptwp5d/nbclient-0.5.9
nbconvert==6.3.0
nbformat==5.1.3
nest-asyncio @ file:///private/tmp/jupyterlab--nest-asyncio-20211211-70040-72pz5e/nest_asyncio-1.5.4
networkx==2.6.3
notebook==6.4.6
numpy==1.23.0rc1
openpyxl==3.0.9
packaging @ file:///private/tmp/jupyterlab--packaging-20211211-70040-1f14ddt/packaging-21.3
pandas==1.4.2
pandocfilters==1.5.0
parso==0.8.3
pathspec==0.9.0
pexpect==4.8.0
pickleshare==0.7.5
Pillow==9.1.1
platformdirs==2.4.1
ply==3.11
prometheus-client==0.12.0
prompt-toolkit @ file:///private/tmp/jupyterlab--prompt-toolkit-20211211-70040-hcpjwc/prompt_toolkit-3.0.24
ptyprocess @ file:///private/tmp/jupyterlab--ptyprocess-20211211-70040-wjbvpa/ptyprocess-0.7.0
pure-eval==0.2.1
pybind11==2.8.0
pycparser==2.21
Pygments==2.10.0
pyparsing==3.0.6
pyrsistent @ file:///private/tmp/jupyterlab--pyrsistent-20211211-70040-1fnadg/pyrsistent-0.18.0
python-dateutil==2.8.2
pythran==0.10.0
pytz==2022.1
PyWavelets==1.2.0
PyYAML==6.0
pyzmq @ file:///private/tmp/jupyterlab--pyzmq-20211211-70040-2xtuon/pyzmq-22.3.0
qtconsole==5.2.2
QtPy==2.0.0
requests==2.27.1
scikit-image==0.19.1
scikit-learn==1.1.dev0
scipy==1.8.1
seaborn==0.11.2
Send2Trash==1.8.0
six==1.16.0
smart-open==5.2.1
sniffio @ file:///private/tmp/jupyterlab--sniffio-20211211-70040-wu3dri/sniffio-1.2.0
squarify==0.4.3
stack-data==0.1.4
terminado @ file:///private/tmp/jupyterlab--terminado-20211211-70040-dw1vl6/terminado-0.12.1
testpath @ file:///private/tmp/jupyterlab--testpath-20211211-70040-895z1/testpath-0.5.0
threadpoolctl==3.0.0
tifffile==2021.11.2
tomli==1.2.3
torch==1.13.0.dev20220528
torchaudio==0.11.0
torchsummary==1.5.1
torchtext==0.10.0
torchvision==0.14.0a0+f0f8a3c
torchviz==0.0.2
tornado==6.1
tqdm==4.62.3
traitlets @ file:///private/tmp/jupyterlab--traitlets-20211211-70040-ru76xv/traitlets-5.1.1
typing_extensions==4.2.0
urllib3==1.26.9
wcwidth==0.2.5
webencodings==0.5.1
websocket-client==1.2.3
wget==3.2
widgetsnbextension==3.5.2
yfinance==0.1.64
in the code , am setting device = torch.device('mps')
at this line: history = [evaluate(model, valid_dl)]
am getting runtime error
Input type (MPSFloatType) and weight type (torch.FloatTensor) should be the same
Trace:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<timed exec> in <module>
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/autograd/grad_mode.py in decorate_context(*args, **kwargs)
25 def decorate_context(*args, **kwargs):
26 with self.clone():
---> 27 return func(*args, **kwargs)
28 return cast(F, decorate_context)
29
/var/folders/mz/qfpvpvf550s039lrnxg70whh0000gn/T/ipykernel_11483/1143432410.py in evaluate(model, val_loader)
3 def evaluate(model, val_loader):
4 model.eval()
----> 5 outputs = [model.validation_step(batch) for batch in val_loader]
6 return model.validation_epoch_end(outputs)
7
/var/folders/mz/qfpvpvf550s039lrnxg70whh0000gn/T/ipykernel_11483/1143432410.py in <listcomp>(.0)
3 def evaluate(model, val_loader):
4 model.eval()
----> 5 outputs = [model.validation_step(batch) for batch in val_loader]
6 return model.validation_epoch_end(outputs)
7
/var/folders/mz/qfpvpvf550s039lrnxg70whh0000gn/T/ipykernel_11483/446280773.py in validation_step(self, batch)
16 def validation_step(self, batch):
17 images, labels = batch
---> 18 out = self(images) # Generate prediction
19 loss = F.cross_entropy(out, labels) # Calculate loss
20 acc = accuracy(out, labels) # Calculate accuracy
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1129 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130 return forward_call(*input, **kwargs)
1131 # Do not call functions when jit is used
1132 full_backward_hooks, non_full_backward_hooks = [], []
/var/folders/mz/qfpvpvf550s039lrnxg70whh0000gn/T/ipykernel_11483/3789274317.py in forward(self, xb)
29
30 def forward(self, xb): # xb is the loaded batch
---> 31 out = self.conv1(xb)
32 out = self.conv2(out)
33 out = self.res1(out) + out
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1129 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130 return forward_call(*input, **kwargs)
1131 # Do not call functions when jit is used
1132 full_backward_hooks, non_full_backward_hooks = [], []
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/container.py in forward(self, input)
137 def forward(self, input):
138 for module in self:
--> 139 input = module(input)
140 return input
141
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1129 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130 return forward_call(*input, **kwargs)
1131 # Do not call functions when jit is used
1132 full_backward_hooks, non_full_backward_hooks = [], []
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/conv.py in forward(self, input)
457
458 def forward(self, input: Tensor) -> Tensor:
--> 459 return self._conv_forward(input, self.weight, self.bias)
460
461 class Conv3d(_ConvNd):
/opt/homebrew/Cellar/jupyterlab/3.2.5/libexec/lib/python3.9/site-packages/torch/nn/modules/conv.py in _conv_forward(self, input, weight, bias)
453 weight, bias, self.stride,
454 _pair(0), self.dilation, self.groups)
--> 455 return F.conv2d(input, weight, bias, self.stride,
456 self.padding, self.dilation, self.groups)
457
RuntimeError: Input type (MPSFloatType) and weight type (torch.FloatTensor) should be the same
MPS is still new and am trying to figure out the cause here, any suggestions are welcome,
the code runs fine if torch device is set to CPU - just takes so much time.
Thanks,
Deep Kamal Singh
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
我的猜测是该模型尚未放在MPS设备上。
如果将模型放置在MPS设备上(通过调用
model.to(device)
),您的代码是否有效?My guess is that the model has not been placed onto the MPS device.
If you place your model onto the MPS device (by calling
model.to(device)
), does your code work?我遇到了同样的情况。
通过添加
将其求解到('MPS')
模型
,例如:I have meet the same situation.
solve this by add
to('mps')
tomodel
, for instance :