用Dirichlet和Neumann边界条件求解二阶微分方程
热方程式的傅立叶定律
我想解决一个孤立的电加热杆的
:具有dirichlet边界条件的条件
和neumann边界的条件,其中
x
- 的长度坐标为
- 杆的长度是杆k的长度
- 是杆的长度是材料(假定常数)
- 是每单位长度的内部热量产生
- Q的热量Q热负载
- T l 是右侧的环境温度
以求解微分方程
eqn : 'diff(T, x, 2) + Q / k = 0;
sol : ode2(eqn, T, x);
Q 的形式
但是,在使用边界条件使用边界条件时
bc2(sol, x=0, 'diff(T, x)=-q/k, x=L, T=TL);
:我得到错误的答案
,而我期望看到的是
,如果您能帮助我知道问题是什么以及如何解决它,我将不胜感激。
I want to solve the Fourier’s law for the heat equation
of an isolated electrically heated rod:
with a Dirichlet boundary condition of
and a Neumann boundary condition of
where
- x is the length coordinate
- L is the length of the rod
- K is the thermal conductivity of the material (assumed constant)
- Q is the internal heat generation per unit length
- q heat load from the left side
- TL is the ambient temperature on the right side
To solve the differential equation I used the
eqn : 'diff(T, x, 2) + Q / k = 0;
sol : ode2(eqn, T, x);
giving the correct general form of
however when applying the boundary conditions using:
bc2(sol, x=0, 'diff(T, x)=-q/k, x=L, T=TL);
I get the wrong answer of
while what I expected to see was
I would appreciate it if you could help me know what is the problem and how I can resolve it.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
在这种特定情况下,由于neumann边界条件发生在
x = 0
中,因此我可以使用它来获得正确的结果:
In this specific case, because the Neumann boundary condition happened in the
x = 0
I could use theto get the correct result: