带有XGBoost的时间序列
On some time series data I am working with XGBoost and I am getting a large value of RMSE:
I scaled all the data (including the target) and I got the logic results of values between 0 and 1:
I'm not sure if I can say that my model is accurate according to the scaled data values?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
通常,我们将MAE用作现实世界中数据的测试统计量。
高MSE表明您的预测中存在很大的异常值。
MAE vs MSE:
平均绝对错误(MAE)不容易受到异常值的影响,因为它不会“惩罚”异常值。
它在使用连续变量数据测量性能的情况下使用。
它产生的线性数量使加权个体差异均等。
平均平方错误(MSE)更容易受到异常值的影响,因为它会严重“惩罚”异常值。
当数据集包含异常值或意外值(太高或太低的值)时,该度量会出色。
其他提示:
您还应该研究均方根误差(RMSE)公制。
这使您可以识别模型预测错误来修复它。
如果RMSE接近MAE,则该模型会犯许多相对较小的错误。
如果RMSE接近MSE,则该模型犯了很少但很大的错误。
Mae ≤ rmse ≤ MSE (用于回归)
Generally, we use MAE as the test statistic for real-world data.
High MSE is an indicator that there are big outliers in your predictions.
MAE vs MSE:
Mean Absolute Error (MAE) is less susceptible to outliers since it does not "penalise" outliers.
It is used in cases where performance is measured using continuous variable data.
It produces a linear number that equalizes the weighted individual disparities.
Mean Squared Error (MSE) is more susceptible to outliers as it "penalise" outliers heavily.
This metric excels when the dataset contains outliers, or unexpected values (too high or too low values).
Additional tips:
You should also look into the Root Mean Squared Error (RMSE) metric.
This allows you to identify your model prediction errors to fix it.
If RMSE is close to MAE, the model makes many relatively small errors.
If RMSE is close to MSE, the model makes few but large errors.
MAE ≤ RMSE ≤ MSE (for Regression)