是否可以使用Kitti数据集进行监督的单眼深度估计?
我最近开始了解有关受监督的单眼深度估计的更多信息。我为此使用了NYU-V2数据集。由于数据集的结构非常清楚,因此很容易设计火炬加载程序并预处理数据。但是,就Kitti数据集而言,这是非常令人困惑的。是否可以使用Kitti进行监督的单眼深度估计? 我在此处找到了Kitt的火炬加载程序: https://github.com/joseph-zhang/kitti-khang/kittii -torchloader 但是,我不明白如何使用Kitti数据集将其用于深度估算。文件夹结构完全不同!我的计划是使用有监督的单一深度方法训练简单的CNN。
I have recently started to learn more about supervised monocular depth estimation. I used the NYU-V2 dataset for it. it is easy to design a torch loader and pre-process the data since the structure of the dataset is quite clear. But in the case of Kitti dataset, it is very confusing. Is it possible to use Kitti for supervised monocular depth estimation?
I found a torch loader for kitt here: https://github.com/joseph-zhang/KITTI-TorchLoader
however, I don't understand how to use it for depth estimation using the Kitti dataset. the folder structure is quite different!. My plan is to train a simple CNN using a supervised mono depth approach.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
我认为这是合理的,因为KITTI数据集包含带有相应的RAW LIDAR扫描和RGB图像(左图,右图像和深度图)的深度图( kitti )。我不知道GITHUB存储库的确有效,但是数据集/数据加载程序应采用类似的格式。但是,查看回购文件,我认为您只需要安装库,然后将数据集的root_path和pytorch映像转换输入。
I think it is plausible since the KITTI dataset contains depth maps with the corresponding raw LiDaR scans and RGB images (left-image, right-image and depth map) (KITTI). I don't know how exactly the github repo works but the dataset/dataloader should be in a similar format. However, taking a look on the repo files, I think you need only to install the library and then pass as input the root_path of your dataset and the pytorch image transformations.
存储库指出,密集的深度图是LIDAR射线图的完成,并与RAW KITTI数据集进行了预测和对齐。
Andreas Geiger et al。 Vision meets Robotics: The KITTI Dataset
Looking at the
换句话说,您可以选择执行Velodyne点和深度完成的摄像头。 By default
cam
设置为2
,这意味着cam_2
,左相机视图。The repository states that the dense depth map are completions of the lidar ray maps and projected and aligned with the raw KITTI dataset.
Andreas Geiger et al., Vision meets Robotics: The KITTI Dataset
Looking at the dev toolkit for KITTI, the
get_depth
function receives as an argument the camera id of the camera the Velodyne points are projected onto. This function is called here the dataloader withcam=self.cam
which is set as an attribute to theKittiloader
instance.In other words, you can choose on which camera the Velodyne points and depth completion is performed. By default
cam
is set to2
, which meanscam_2
, the left camera view.