固定截距和计算Pykalman回归的R2的多元回归
我正在使用Pykalman模块进行以下回归:y = b1 * x1 + b2 * x2 +互感。 我想在整个回归中保持截距不变。
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
trans_cov = delta / (1 - delta) * np.eye(3) \
obs_mat = np.vstack( [df['X1'], df['X2'],np.ones(df['X1'].shape)]).T[:, np.newaxis]
from pykalman import KalmanFilter
kf = KalmanFilter(
n_dim_obs=1,\
n_dim_state=3,\
initial_state_mean=np.zeros(3),\
initial_state_covariance=np.ones((3, 3)),\
transition_matrices=np.eye(3),\
observation_matrices=obs_mat,\
observation_covariance=1.0,\
transition_covariance=trans_cov )
**state_means**, state_covs = kf.filter(df['Y'].values)
state_means 的输出具有随时间变化的截距值。
- Pykalman有没有办法获得固定的拦截
- 如何计算上卡尔曼回归的r ** 2?
数据: 在此处输入图像描述
结果:
我正在寻找 contand buntst intercept的结果。
I am using the pykalman module to do the following regression: Y = b1 * x1 + b2 * x2 + intercept.
I would like to keep the intercept constant for the entire regression.
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
trans_cov = delta / (1 - delta) * np.eye(3) \
obs_mat = np.vstack( [df['X1'], df['X2'],np.ones(df['X1'].shape)]).T[:, np.newaxis]
from pykalman import KalmanFilter
kf = KalmanFilter(
n_dim_obs=1,\
n_dim_state=3,\
initial_state_mean=np.zeros(3),\
initial_state_covariance=np.ones((3, 3)),\
transition_matrices=np.eye(3),\
observation_matrices=obs_mat,\
observation_covariance=1.0,\
transition_covariance=trans_cov )
**state_means**, state_covs = kf.filter(df['Y'].values)
The output of state_means has time-varying intercept values.
- Is there a way in pykalman to get fixed intercept
- How can I compute the R**2 of the pykalman regression?
DATA:
enter image description here
RESULTS:
I am looking for a result with constant intercept.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论