如何使用flow_from_directory使用k折

发布于 2025-02-02 03:44:10 字数 1423 浏览 3 评论 0原文

这是一所学校。 我已经使用datagen拆分数据集 编译和安装我的模型后,我想应用K折叠交叉验证或使用flow_from_directory使用k-fold

from tensorflow import keras
# Forming datasets
datagen = keras.preprocessing.image.ImageDataGenerator(rescale=1/255, validation_split=0.3)
# Training and validation dataset
train1 = datagen.flow_from_directory('C:/Users/hamza/Desktop/kkk/TrainD', target_size=(224,224), subset='training')
val = datagen.flow_from_directory('C:/Users/hamza/Desktop/kkk/TrainD', target_size=(224,224), subset='validation')

# Test dataset for evaluation
datagen2 = keras.preprocessing.image.ImageDataGenerator(rescale=1/255)

test = datagen2.flow_from_directory('C:/Users/hamza/Desktop/kkk/TestD')


from keras.layers import Dense,GlobalMaxPool2D,Dropout
from keras.models import Model

input_shape = (224,224,3)
# Function to initialize model (ResNet152V2)
base_model = keras.applications.MobileNetV2(input_shape=input_shape,

    include_top=False
)

base_model.trainable = False

x = base_model.output

x = GlobalMaxPool2D()(x)

x = Dense(1024, activation='relu')(x)
pred = Dense(3, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=pred)


model.summary()

from keras.optimizers import SGD
# Model Compiling
model.compile(loss='categorical_crossentropy', optimizer= SGD(lr=0.01, momentum=0.9), metrics='accuracy')

# Model Fitting

history=model.fit(train1, batch_size=32, epochs=20, validation_data=val)

It's a school projet.
I have split my dataset using Datagen
after compiling and fitting my models i want to apply the K Fold cross validation or use k-fold with flow_from_directory

from tensorflow import keras
# Forming datasets
datagen = keras.preprocessing.image.ImageDataGenerator(rescale=1/255, validation_split=0.3)
# Training and validation dataset
train1 = datagen.flow_from_directory('C:/Users/hamza/Desktop/kkk/TrainD', target_size=(224,224), subset='training')
val = datagen.flow_from_directory('C:/Users/hamza/Desktop/kkk/TrainD', target_size=(224,224), subset='validation')

# Test dataset for evaluation
datagen2 = keras.preprocessing.image.ImageDataGenerator(rescale=1/255)

test = datagen2.flow_from_directory('C:/Users/hamza/Desktop/kkk/TestD')


from keras.layers import Dense,GlobalMaxPool2D,Dropout
from keras.models import Model

input_shape = (224,224,3)
# Function to initialize model (ResNet152V2)
base_model = keras.applications.MobileNetV2(input_shape=input_shape,

    include_top=False
)

base_model.trainable = False

x = base_model.output

x = GlobalMaxPool2D()(x)

x = Dense(1024, activation='relu')(x)
pred = Dense(3, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=pred)


model.summary()

from keras.optimizers import SGD
# Model Compiling
model.compile(loss='categorical_crossentropy', optimizer= SGD(lr=0.01, momentum=0.9), metrics='accuracy')

# Model Fitting

history=model.fit(train1, batch_size=32, epochs=20, validation_data=val)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文