如何基于过去的数据优化变量,而没有任何已知的目标函数
我正在处理一个非线性优化问题,在这个问题中,我没有方程来仅处理过去的数据。
创建示例代码段与
import pandas as pd
size = 100
min_d = 5
max_d = 20
df = pd.DataFrame(columns=['S','D','A'])
df['S'] = np.random.random(size)
df['D'] = np.random.randint(min_d,max_d,size)
df['A'] = np.random.uniform(3,7,size)
df.head()
min_d< = d< = max_d
基于过去的数据, 对于新行,我想使用d的优化值(基于给定的约束),使用s的给定值(无法更改)来最大化A的值。
我对优化知识非常有限,将不胜感激。
I am working on a non-linear optimization problem in which I don't have an equation to work on only having past data.
Creating a sample code snippet to work with
import pandas as pd
size = 100
min_d = 5
max_d = 20
df = pd.DataFrame(columns=['S','D','A'])
df['S'] = np.random.random(size)
df['D'] = np.random.randint(min_d,max_d,size)
df['A'] = np.random.uniform(3,7,size)
df.head()
Note :
min_d <= D <= max_d
Based on the past data,
for a new row, I want to maximize the value for A by using the optimized value of D(based on the constraint given), using the given value of S(which can't be changed ).
I have very limited knowledge of optimization any help would be appreciated.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论