火花流:经过ALS

发布于 2025-02-01 13:24:26 字数 1383 浏览 3 评论 0原文

我是新来的火花流。当我在ALS上训练Spark流媒体:它是佩戴的。

java.lang.illegalgumentException:要求失败:在streaming.scala in andursplit上,Mappartitionsrdd [4]中没有可用的评分。Scala:15 \

import org.apache.spark.mllib.recommendation.ALS\

import org.apache.spark.mllib.recommendation.Rating\
import org.apache.spark.SparkConf\
import org.apache.spark.SparkContext\
import org.apache.spark.streaming.{Seconds, StreamingContext}\
import org.apache.spark.streaming._\
object streaming {\
  def main(args: Array[String]) {\
    val conf = new SparkConf().setAppName("ALS").setMaster("local[2]")\
    val ssc = new StreamingContext(conf, Seconds(1))\
    val ratingStream = ssc.textFileStream(directory="/home/chiao/Downloads/streaming/").map(_.split(',') match {case Array(user,item,rate)=>Rating(user.toInt,item.toInt,rate.toInt)})\
    val rank = 100\
    val numIterations = 12\
    val lambda = 0.01\
     ratingStream.foreachRDD(ratingRDD => {val testTrain =  ratingRDD.randomSplit(Array(0.3, 0.7))\
                                           val model = ALS.train(testTrain(1),     rank,numIterations, lambda)\
                                           val test = testTrain(0).map {case Rating(subject, activity, freq) =>(subject, activity)}\
                                           val prediction = model.predict(test)

    })

    ssc.start()
    ssc.awaitTermination
}}

I'm new to spark streaming. When I trained spark Streaming on ALS:it was worng.

java.lang.IllegalArgumentException: requirement failed: No ratings available from MapPartitionsRDD[4] at randomSplit at streaming.scala:15\

import org.apache.spark.mllib.recommendation.ALS\

import org.apache.spark.mllib.recommendation.Rating\
import org.apache.spark.SparkConf\
import org.apache.spark.SparkContext\
import org.apache.spark.streaming.{Seconds, StreamingContext}\
import org.apache.spark.streaming._\
object streaming {\
  def main(args: Array[String]) {\
    val conf = new SparkConf().setAppName("ALS").setMaster("local[2]")\
    val ssc = new StreamingContext(conf, Seconds(1))\
    val ratingStream = ssc.textFileStream(directory="/home/chiao/Downloads/streaming/").map(_.split(',') match {case Array(user,item,rate)=>Rating(user.toInt,item.toInt,rate.toInt)})\
    val rank = 100\
    val numIterations = 12\
    val lambda = 0.01\
     ratingStream.foreachRDD(ratingRDD => {val testTrain =  ratingRDD.randomSplit(Array(0.3, 0.7))\
                                           val model = ALS.train(testTrain(1),     rank,numIterations, lambda)\
                                           val test = testTrain(0).map {case Rating(subject, activity, freq) =>(subject, activity)}\
                                           val prediction = model.predict(test)

    })

    ssc.start()
    ssc.awaitTermination
}}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

掀纱窥君容 2025-02-08 13:24:26

我的数据是:
1,10,100
1,12,100
1,13,100
2,10,100
2,11,100
2,13,100
3,10,100
3,12,100
在文件中另存为user.txt:/home/chiao/downloads/streaming

my data is:
1,10,100
1,12,100
1,13,100
2,10,100
2,11,100
2,13,100
3,10,100
3,12,100
save as user.txt in file:/home/chiao/Downloads/streaming

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文