Google表:最早的日期和列表中的一个月价值
以下是数据:
02/06/2000 15:30:00 5.12
05/06/2000 15:30:00 5.2
06/06/2000 15:30:00 5.28
07/06/2000 15:30:00 5.26
08/06/2000 15:30:00 5.33
09/06/2000 15:30:00 5.36
12/06/2000 15:30:00 5.24
13/06/2000 15:30:00 5.33
14/06/2000 15:30:00 5.39
15/06/2000 15:30:00 5.3
16/06/2000 15:30:00 5.29
19/06/2000 15:30:00 5.27
20/06/2000 15:30:00 5.26
21/06/2000 15:30:00 5.33
22/06/2000 15:30:00 5.25
23/06/2000 15:30:00 5.15
26/06/2000 15:30:00 5.21
27/06/2000 15:30:00 5.15
28/06/2000 15:30:00 5.09
29/06/2000 15:30:00 5.11
30/06/2000 15:30:00 4.82
03/07/2000 15:30:00 4.87
04/07/2000 15:30:00 4.92
05/07/2000 15:30:00 4.87
06/07/2000 15:30:00 4.93
07/07/2000 15:30:00 4.85
10/07/2000 15:30:00 5.2
11/07/2000 15:30:00 5.43
12/07/2000 15:30:00 5.54
13/07/2000 15:30:00 5.29
14/07/2000 15:30:00 5.17
17/07/2000 15:30:00 5.29
18/07/2000 15:30:00 5.07
19/07/2000 15:30:00 5.05
20/07/2000 15:30:00 4.92
21/07/2000 15:30:00 5.04
24/07/2000 15:30:00 4.77
25/07/2000 15:30:00 4.91
26/07/2000 15:30:00 4.62
27/07/2000 15:30:00 4.8
28/07/2000 15:30:00 4.59
31/07/2000 15:30:00 4.47
01/08/2000 15:30:00 4.57
02/08/2000 15:30:00 4.51
03/08/2000 15:30:00 4.57
04/08/2000 15:30:00 4.41
07/08/2000 15:30:00 4.3
08/08/2000 15:30:00 4.35
09/08/2000 15:30:00 4.35
10/08/2000 15:30:00 4.33
11/08/2000 15:30:00 4.3
14/08/2000 15:30:00 4.26
16/08/2000 15:30:00 4.26
17/08/2000 15:30:00 4.25
18/08/2000 15:30:00 4.28
21/08/2000 15:30:00 4.36
22/08/2000 15:30:00 4.39
23/08/2000 15:30:00 4.44
24/08/2000 15:30:00 4.45
25/08/2000 15:30:00 4.52
28/08/2000 15:30:00 4.68
29/08/2000 15:30:00 4.71
30/08/2000 15:30:00 4.68
31/08/2000 15:30:00 4.79
我想拥有一个单个月份的平均值:
06/2000 5.225
07/2000 4.98
08/2000 4.44
现在,我正在使用多个列,其中包含多个获取此数据的fucntions。通过使用GoogleFinance功能查询原始数据将是高度明显的。 提前致谢。 此致
Below is the data:
02/06/2000 15:30:00 5.12
05/06/2000 15:30:00 5.2
06/06/2000 15:30:00 5.28
07/06/2000 15:30:00 5.26
08/06/2000 15:30:00 5.33
09/06/2000 15:30:00 5.36
12/06/2000 15:30:00 5.24
13/06/2000 15:30:00 5.33
14/06/2000 15:30:00 5.39
15/06/2000 15:30:00 5.3
16/06/2000 15:30:00 5.29
19/06/2000 15:30:00 5.27
20/06/2000 15:30:00 5.26
21/06/2000 15:30:00 5.33
22/06/2000 15:30:00 5.25
23/06/2000 15:30:00 5.15
26/06/2000 15:30:00 5.21
27/06/2000 15:30:00 5.15
28/06/2000 15:30:00 5.09
29/06/2000 15:30:00 5.11
30/06/2000 15:30:00 4.82
03/07/2000 15:30:00 4.87
04/07/2000 15:30:00 4.92
05/07/2000 15:30:00 4.87
06/07/2000 15:30:00 4.93
07/07/2000 15:30:00 4.85
10/07/2000 15:30:00 5.2
11/07/2000 15:30:00 5.43
12/07/2000 15:30:00 5.54
13/07/2000 15:30:00 5.29
14/07/2000 15:30:00 5.17
17/07/2000 15:30:00 5.29
18/07/2000 15:30:00 5.07
19/07/2000 15:30:00 5.05
20/07/2000 15:30:00 4.92
21/07/2000 15:30:00 5.04
24/07/2000 15:30:00 4.77
25/07/2000 15:30:00 4.91
26/07/2000 15:30:00 4.62
27/07/2000 15:30:00 4.8
28/07/2000 15:30:00 4.59
31/07/2000 15:30:00 4.47
01/08/2000 15:30:00 4.57
02/08/2000 15:30:00 4.51
03/08/2000 15:30:00 4.57
04/08/2000 15:30:00 4.41
07/08/2000 15:30:00 4.3
08/08/2000 15:30:00 4.35
09/08/2000 15:30:00 4.35
10/08/2000 15:30:00 4.33
11/08/2000 15:30:00 4.3
14/08/2000 15:30:00 4.26
16/08/2000 15:30:00 4.26
17/08/2000 15:30:00 4.25
18/08/2000 15:30:00 4.28
21/08/2000 15:30:00 4.36
22/08/2000 15:30:00 4.39
23/08/2000 15:30:00 4.44
24/08/2000 15:30:00 4.45
25/08/2000 15:30:00 4.52
28/08/2000 15:30:00 4.68
29/08/2000 15:30:00 4.71
30/08/2000 15:30:00 4.68
31/08/2000 15:30:00 4.79
I want to have an average of the individual months like:
06/2000 5.225
07/2000 4.98
08/2000 4.44
Right now, I am using multiple columns which include multiple fucntions for getting this data. Query by using googlefinance function raw data will be highly appreciable.
Thanks in advance.
Best Regards
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
尝试:
try:
您可以简单地通过一个枢轴表
组按年度
You can simply do it by a pivot table
Group dates by year-month