律师在AGDA中的固定点定理
我正在努力证明在Agda中。确切地说,我试图找出底部定理的证明。
surjective : {A : _} {B : _} → (A → B) → Set
surjective {B = B} f = (b : B) → ∃ λ a → f a ≡ b
fixedPoint : {A : _} → (A → A) -> Set
fixedPoint f = ∃ λ a → f a ≡ a
lawvere : {A : _} {B : _}
→ (ϕ : A → A → B) → (surjective ϕ) → (f : B → B) →
fixedPoint f
lawvere = ?
有关如何处理涉及存在的类似证据的一般提示也将有所帮助。
I was struggling to prove a more basic version of lawvere's fixed point theorem in agda. Precisely I am trying to figure out the proof for the bottom theorem.
surjective : {A : _} {B : _} → (A → B) → Set
surjective {B = B} f = (b : B) → ∃ λ a → f a ≡ b
fixedPoint : {A : _} → (A → A) -> Set
fixedPoint f = ∃ λ a → f a ≡ a
lawvere : {A : _} {B : _}
→ (ϕ : A → A → B) → (surjective ϕ) → (f : B → B) →
fixedPoint f
lawvere = ?
General tips about how to approach similar proofs involving existentials would also be helpful.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我认为我的问题是犹豫不决地使用对AGDA中经常遇到麻烦的方程推理。我最终发现的解决方案是:
I think my problem was hesitancy to use equational reasoning which I often have trouble with in agda. The solution I eventually found was: