matplotlib.pyplot.tripcolor如何用随机的RGB颜色填充三角形?

发布于 2025-02-01 02:04:05 字数 4811 浏览 1 评论 0原文

假设我有一堆三角形,我知道如何使用matplotlib.pyplot.tripcolor绘制它们,我想知道如何在整个RGB颜色空间中使用完全随机的RGB颜色填充单个三角形(所有16777216颜色)与x,y无关,如何完成此操作?

我有这个:

import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import Delaunay
from random import random, randbytes

plt.style.use('_mpl-gallery-nogrid')

pts = np.zeros((360,2))
pts[:,0] = np.random.randint(0,1920,360)
pts[:,1] = np.random.randint(0,1080,360)
tri = Delaunay(pts)
plt.xlim(0, 1920)
plt.ylim(0, 1080)
centers = np.sum(pts[tri.simplices], axis=1, dtype='int')/3.0
colors = np.array([ (x-960)**2 + (y-540)**2 for x,y in centers])
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()
l = centers.shape[0]

colors = np.random.random(size=l)
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

它们正在工作,但是两个示例的颜色变化太小。

第一个生成这样的东西:

”在此处输入图像描述”

颜色根本不是随机的。

第二个生成以下生成:

“在此处输入图像描述”

第二张图像中的颜色几乎没有变化。

我尝试了许多方法,所有方法都失败了:

colors = np.random.random((l, 3))
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [tuple(randbytes(3)) for i in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [tuple(randbytes(4)) for i in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [tuple([random() for i in range(3)]) for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [tuple([random() for i in range(4)]) for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [randbytes(3).hex() for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [randbytes(4).hex() for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = ['#'+randbytes(3).hex() for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = ['#'+randbytes(4).hex() for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

前七个升级valueerror:收集只能映射等级1数组

最后两个提高typeError:dtype< u6的图像数据不能转换为float

如何正确执行此操作?究竟应该放入faceColors中?官方文档对应该是什么非常含糊。


为了完整的缘故,我的意图是:

from PIL import Image

fig = plt.figure(frameon=False, figsize=(19.2,10.8), dpi=100)
ax = fig.add_subplot(111)
ax.set_axis_off()
...
fig.canvas.draw()
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
plt.axis('scaled')
plt.box(False)
Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())

我能够得到这个:

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Polygon
from PIL import Image
from scipy.spatial import Delaunay
from random import random, randbytes

plt.style.use('_mpl-gallery-nogrid')

points = np.zeros((360,2))
points[:,0] = np.random.randint(0,1920,360)
points[:,1] = np.random.randint(0,1080,360)
triangles = points[Delaunay(points).simplices]

fig = plt.figure(frameon=False, figsize=(19.2,10.8), dpi=100)
ax = fig.add_subplot(111)
ax.set_axis_off()
for triangle in triangles:
    ax.add_patch(Polygon(triangle, edgecolor='#c0c0c0', facecolor='#'+randbytes(3).hex(), fill=True))

plt.xlim(0, 1920)
plt.ylim(0, 1080)
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
plt.axis('scaled')
plt.box(False)
fig.canvas.draw()
Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb()).show()

但是我的代码显然比tripColor的效率要少得多。

Say I have a bunch of triangles, I know how to draw them using matplotlib.pyplot.tripcolor, I want to know how to fill the individual triangles with completely random RGB colors from the entire RGB color space (all 16777216 colors) unrelated to x, y whatsoever, how to get this done?

I have this:
source

import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import Delaunay
from random import random, randbytes

plt.style.use('_mpl-gallery-nogrid')

pts = np.zeros((360,2))
pts[:,0] = np.random.randint(0,1920,360)
pts[:,1] = np.random.randint(0,1080,360)
tri = Delaunay(pts)
plt.xlim(0, 1920)
plt.ylim(0, 1080)
centers = np.sum(pts[tri.simplices], axis=1, dtype='int')/3.0
colors = np.array([ (x-960)**2 + (y-540)**2 for x,y in centers])
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()
l = centers.shape[0]

colors = np.random.random(size=l)
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

They are working, but the color variations of the two examples are too small.

The first generates something like this:

enter image description here

The colors are not random at all.

The second generates this:

enter image description here

There is little variation of colors in the second image.

I have tried a number of methods, all of them failed:

colors = np.random.random((l, 3))
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [tuple(randbytes(3)) for i in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [tuple(randbytes(4)) for i in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [tuple([random() for i in range(3)]) for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [tuple([random() for i in range(4)]) for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [randbytes(3).hex() for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = [randbytes(4).hex() for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = ['#'+randbytes(3).hex() for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

colors = ['#'+randbytes(4).hex() for j in range(l)]
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

The first seven raise ValueError: Collections can only map rank 1 arrays.

The last two raise TypeError: Image data of dtype <U6 cannot be converted to float.

How to properly do this? Exactly what should be put into facecolors? The official documentation is extremely vague about what it should be.


For completeness' sake, my intention is to:

from PIL import Image

fig = plt.figure(frameon=False, figsize=(19.2,10.8), dpi=100)
ax = fig.add_subplot(111)
ax.set_axis_off()
...
fig.canvas.draw()
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
plt.axis('scaled')
plt.box(False)
Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())

I was able to get this:

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Polygon
from PIL import Image
from scipy.spatial import Delaunay
from random import random, randbytes

plt.style.use('_mpl-gallery-nogrid')

points = np.zeros((360,2))
points[:,0] = np.random.randint(0,1920,360)
points[:,1] = np.random.randint(0,1080,360)
triangles = points[Delaunay(points).simplices]

fig = plt.figure(frameon=False, figsize=(19.2,10.8), dpi=100)
ax = fig.add_subplot(111)
ax.set_axis_off()
for triangle in triangles:
    ax.add_patch(Polygon(triangle, edgecolor='#c0c0c0', facecolor='#'+randbytes(3).hex(), fill=True))

plt.xlim(0, 1920)
plt.ylim(0, 1080)
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
plt.axis('scaled')
plt.box(False)
fig.canvas.draw()
Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb()).show()

But my code is obviously much less efficient than tripcolor.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

老子叫无熙 2025-02-08 02:04:05

除非您需要一些特定功能,否则避免使用tripColor alltodether可能是最容易的?您可以从Delauny Triangulation中创建自己的PolyCollection,在格式化方面,这要灵活得多。

from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
from scipy.spatial import Delaunay
from copy import copy

n_points = 360
pts = np.random.randint(0, 1920, (n_points, 2)).astype(np.float32)

tri = Delaunay(pts)

vertices = np.stack((
    tri.points[tri.simplices, 0], # x
    tri.points[tri.simplices, 1], # y
), axis=-1)


collection = PolyCollection(vertices, edgecolor="k")
collection.set_facecolor(np.random.rand(len(vertices), 3))

fig, ax = plt.subplots(figsize=(8,8), facecolor="w")

ax.add_collection(copy(collection))
ax.autoscale_view()

It's probably easiest to avoid using tripcolor alltogether, unless you need some of it's specific functionality? You can create your own PolyCollection from the Delauny triangulation, which is a lot more flexible regarding formatting.

from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
from scipy.spatial import Delaunay
from copy import copy

n_points = 360
pts = np.random.randint(0, 1920, (n_points, 2)).astype(np.float32)

tri = Delaunay(pts)

vertices = np.stack((
    tri.points[tri.simplices, 0], # x
    tri.points[tri.simplices, 1], # y
), axis=-1)


collection = PolyCollection(vertices, edgecolor="k")
collection.set_facecolor(np.random.rand(len(vertices), 3))

fig, ax = plt.subplots(figsize=(8,8), facecolor="w")

ax.add_collection(copy(collection))
ax.autoscale_view()

enter image description here

糖果控 2025-02-08 02:04:05

围绕它的一种方法是创建一个生成随机颜色的colormap,而与您分配给faceColorsc的值无关。例如:

import matplotlib.pyplot as plt
from matplotlib.colors import Colormap
import numpy as np
from scipy.spatial import Delaunay

class RandomColors(Colormap):
    def __init__(self):
        pass
    def __call__(self, X, alpha=None, bytes=False):
        # randomly generate an RGBA [N x 4] matrix of colors
        # where N is the number of elements of X
        # X is what we assigne to `facecolors` or `C`
        X = np.atleast_1d(X)
        col = np.random.random((X.shape[0], 4))
        # set alpha=1
        col[:, -1] = 1
        return col


plt.figure()
pts = np.zeros((360,2))
pts[:,0] = np.random.randint(0,1920,360)
pts[:,1] = np.random.randint(0,1080,360)
tri = Delaunay(pts)
plt.xlim(0, 1920)
plt.ylim(0, 1080)
centers = np.sum(pts[tri.simplices], axis=1, dtype='int')/3.0

# Don't really care about what's in this array: our custom colormap
# is going to ignore it!
colors = np.ones(centers.shape[0])
# instantiate the colormap
cmap = RandomColors()
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, cmap=cmap, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

“在此处输入图像描述”

One way to work around it is to create a colormap that generates random colors, independently of the values you have assigned to facecolors or C. For example:

import matplotlib.pyplot as plt
from matplotlib.colors import Colormap
import numpy as np
from scipy.spatial import Delaunay

class RandomColors(Colormap):
    def __init__(self):
        pass
    def __call__(self, X, alpha=None, bytes=False):
        # randomly generate an RGBA [N x 4] matrix of colors
        # where N is the number of elements of X
        # X is what we assigne to `facecolors` or `C`
        X = np.atleast_1d(X)
        col = np.random.random((X.shape[0], 4))
        # set alpha=1
        col[:, -1] = 1
        return col


plt.figure()
pts = np.zeros((360,2))
pts[:,0] = np.random.randint(0,1920,360)
pts[:,1] = np.random.randint(0,1080,360)
tri = Delaunay(pts)
plt.xlim(0, 1920)
plt.ylim(0, 1080)
centers = np.sum(pts[tri.simplices], axis=1, dtype='int')/3.0

# Don't really care about what's in this array: our custom colormap
# is going to ignore it!
colors = np.ones(centers.shape[0])
# instantiate the colormap
cmap = RandomColors()
plt.tripcolor(pts[:,0], pts[:,1], tri.simplices.copy(), facecolors=colors, cmap=cmap, edgecolors='k')
plt.gca().set_aspect('equal')
plt.show()

enter image description here

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文