如何在同一图上很好地处理正常和摄影投影?
我想产生这种数字,取自Sallee等人。 (2021)如果可能的话,直接从python出发:
有一个Cartopy投影CATTOPY.CRS.ROBINSON(Central_Longitude = 0,Globe = NONE)
它的权利接近我在Cartopy投影上的价值的密度函数(超过纬度)。使用Robinson投影管理标签对我来说并不方便,而使用CATTOPY.CRS.PLATECARREE(Central_longitude = 0.0,Globe = NONE)
我没有任何标记轴的问题。
这是最相关的主题(正常和Cartopy的组合我现在在堆栈上建立的同一图中的子图),但这并没有敲响任何铃铛,因为我的目标图有点复杂(罗宾逊投影上方的配色栏的大小,两个虚线以链接。子图,标记纵向和纬度)。
谢谢 !
I want to produce this kind of figure, taken from Sallee et al. (2021) directly from Python if it is possible :
There is a Cartopy projection cartopy.crs.Robinson(central_longitude=0, globe=None)
in the main subplot and at the right of it something close to a density function (over the latitudes) of my value on the Cartopy projection. Managing the labels with Robinson projection is not convenient for me, whereas with cartopy.crs.PlateCarree(central_longitude=0.0, globe=None)
I did not have any issues labelling axis.
This is the most related topics (combination of normal and cartopy subplots within the same figure) that I have founded on stack for now but that doesn't ring any bell since my goal plot is a bit more complicated (size of the colorbar above the Robinson projection, two dashed lines to link the subplots, labelling longitudes and latitudes).
Thank you !
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您没有任何您没有设法创建的具体特定内容?您所要求的大部分都可以从Cartopy/Matplotlib获得。
Matplotlib的其他注释,例如插图变焦行,例如:
“ nofollow noreferrer”> htttps:/
但是,我个人会避免这种情况,并简单地对齐轴,以确保它们共享相同的纬度。对于试图解释数据的用户来说,这可能更直观。
一个随机数据的快速示例:
Is there anything specific that you didn't manage to create? Most of what you ask for is readily available from Cartopy/Matplotlib.
Additional annotation, like the inset zoom lines are possible with Matplotlib, see for example:
https://matplotlib.org/stable/gallery/subplots_axes_and_figures/zoom_inset_axes.html
But I personally would avoid that and simply align the axes to make sure they share the same latitude. That's probably more intuitive for users trying to interpret the data.
A quick example with some random data: