如何绘制来自CNN的特定层输出的轮廓?
我正在尝试从CNN中的特定层拾取输出,并使用matplotlib.pyplot.contour可视化。这是我的CNN体系结构,
input_img = Input(shape=(384, 192, 2))
## Encoder
x = Conv2D(16, (3, 3), activation='tanh', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='tanh', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='tanh', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='tanh', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(4, (3, 3), activation='tanh', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(4, (3, 3), activation='tanh', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Reshape([6*3*4])(x)
encoded = Dense(2,activation='tanh')(x)
## Two variables
val1= Lambda(lambda x: x[:,0:1])(encoded)
val2= Lambda(lambda x: x[:,1:2])(encoded)
## Decoder 1
x1 = Dense(6*3*4,activation='tanh')(val1)
x1 = Reshape([6,3,4])(x1)
x1 = UpSampling2D((2,2))(x1)
x1 = Conv2D(4,(3,3),activation='tanh',padding='same')(x1)
x1 = UpSampling2D((2,2))(x1)
x1 = Conv2D(8,(3,3),activation='tanh',padding='same')(x1)
x1 = UpSampling2D((2,2))(x1)
x1 = Conv2D(8,(3,3),activation='tanh',padding='same')(x1)
x1 = UpSampling2D((2,2))(x1)
x1 = Conv2D(8,(3,3),activation='tanh',padding='same')(x1)
x1 = UpSampling2D((2,2))(x1)
x1 = Conv2D(16,(3,3),activation='tanh',padding='same')(x1)
x1 = UpSampling2D((2,2))(x1)
x1d = Conv2D(2,(3,3),activation='linear',padding='same')(x1)
## Decoder 2
x2 = Dense(6*3*4,activation='tanh')(val2)
x2 = Reshape([6,3,4])(x2)
x2 = UpSampling2D((2,2))(x2)
x2 = Conv2D(4,(3,3),activation='tanh',padding='same')(x2)
x2 = UpSampling2D((2,2))(x2)
x2 = Conv2D(8,(3,3),activation='tanh',padding='same')(x2)
x2 = UpSampling2D((2,2))(x2)
x2 = Conv2D(8,(3,3),activation='tanh',padding='same')(x2)
x2 = UpSampling2D((2,2))(x2)
x2 = Conv2D(8,(3,3),activation='tanh',padding='same')(x2)
x2 = UpSampling2D((2,2))(x2)
x2 = Conv2D(16,(3,3),activation='tanh',padding='same')(x2)
x2 = UpSampling2D((2,2))(x2)
x2d = Conv2D(2,(3,3),activation='linear',padding='same')(x2)
decoded = Add()([x1d,x2d])
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='mse')
# Check the network structure
autoencoder.summary()
我在下面的代码中获得了X1D层的输出,并带有输出形状张量图([none,72])
r1 = autoencoder.layers[13].output
r1.shape
如何用matplotlib轮廓可视化此R1输出,输出应该像这张照片一样。
我为任何帮助或建议提供了帮助。非常感谢!
I am trying to pick up an output from a specific layer in CNN and visualize it with matplotlib.pyplot.contour. This is my CNN architecture
input_img = Input(shape=(384, 192, 2))
## Encoder
x = Conv2D(16, (3, 3), activation='tanh', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='tanh', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='tanh', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='tanh', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(4, (3, 3), activation='tanh', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(4, (3, 3), activation='tanh', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Reshape([6*3*4])(x)
encoded = Dense(2,activation='tanh')(x)
## Two variables
val1= Lambda(lambda x: x[:,0:1])(encoded)
val2= Lambda(lambda x: x[:,1:2])(encoded)
## Decoder 1
x1 = Dense(6*3*4,activation='tanh')(val1)
x1 = Reshape([6,3,4])(x1)
x1 = UpSampling2D((2,2))(x1)
x1 = Conv2D(4,(3,3),activation='tanh',padding='same')(x1)
x1 = UpSampling2D((2,2))(x1)
x1 = Conv2D(8,(3,3),activation='tanh',padding='same')(x1)
x1 = UpSampling2D((2,2))(x1)
x1 = Conv2D(8,(3,3),activation='tanh',padding='same')(x1)
x1 = UpSampling2D((2,2))(x1)
x1 = Conv2D(8,(3,3),activation='tanh',padding='same')(x1)
x1 = UpSampling2D((2,2))(x1)
x1 = Conv2D(16,(3,3),activation='tanh',padding='same')(x1)
x1 = UpSampling2D((2,2))(x1)
x1d = Conv2D(2,(3,3),activation='linear',padding='same')(x1)
## Decoder 2
x2 = Dense(6*3*4,activation='tanh')(val2)
x2 = Reshape([6,3,4])(x2)
x2 = UpSampling2D((2,2))(x2)
x2 = Conv2D(4,(3,3),activation='tanh',padding='same')(x2)
x2 = UpSampling2D((2,2))(x2)
x2 = Conv2D(8,(3,3),activation='tanh',padding='same')(x2)
x2 = UpSampling2D((2,2))(x2)
x2 = Conv2D(8,(3,3),activation='tanh',padding='same')(x2)
x2 = UpSampling2D((2,2))(x2)
x2 = Conv2D(8,(3,3),activation='tanh',padding='same')(x2)
x2 = UpSampling2D((2,2))(x2)
x2 = Conv2D(16,(3,3),activation='tanh',padding='same')(x2)
x2 = UpSampling2D((2,2))(x2)
x2d = Conv2D(2,(3,3),activation='linear',padding='same')(x2)
decoded = Add()([x1d,x2d])
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='mse')
# Check the network structure
autoencoder.summary()
I got the output of x1d layer as the code below with the output shape TensorShape([None, 72])
r1 = autoencoder.layers[13].output
r1.shape
How do I visualize this r1 output with matplotlib contour, the output should be like this photo.
I appriciate any help or suggestion. Thank you very much!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这个Pcolormesh对我有用。
This pcolormesh works for me.