雅虎金融 - 下载特定的他亲数据的时间范围

发布于 2025-01-31 15:24:34 字数 481 浏览 2 评论 0原文

我正在使用以下代码从Yahoo Finance下载库存数据,并想询问如何修改它,以便例如从下午1点至下午3点下载数据?

我已经尝试了几件事,但是到目前为止没有奏效。感谢任何提示!

TickerSymbol = '^GDAXI'
data = yf.download(tickers=TickerSymbol, period='1d', interval='1m')
data.reset_index(inplace=True)
DataDateStrt = data.loc[0, 'Datetime'].strftime('%d.%m.%y')
DataDateStop = data.loc[len(data['Datetime'])-1, 'Datetime'].strftime('%d.%m.%y')
DataTimeSpan = data.loc[len(data['Datetime'])-1, 'Datetime'] - data.loc[0, 'Datetime']

I am using the below code to download stock data from yahoo finance and wanted to ask how I can modify it so that it for instance only downloads data from 1pm to 3pm?

I have tried a few things but it did not work out so far. Would appreciate any tips!

TickerSymbol = '^GDAXI'
data = yf.download(tickers=TickerSymbol, period='1d', interval='1m')
data.reset_index(inplace=True)
DataDateStrt = data.loc[0, 'Datetime'].strftime('%d.%m.%y')
DataDateStop = data.loc[len(data['Datetime'])-1, 'Datetime'].strftime('%d.%m.%y')
DataTimeSpan = data.loc[len(data['Datetime'])-1, 'Datetime'] - data.loc[0, 'Datetime']

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

遮云壑 2025-02-07 15:24:34

您可以为Yahoo Finance的时间间隔设置一个参数。

import yfinance as yf

data = yf.download("AAPL", start="2022-05-01", end="2022-05-03",  interval = "1m")

数据将

                                 Open        High         Low       Close   Adj Close   Volume
Datetime                                                                                      
2022-05-02 09:30:00-04:00  157.339905  157.429993  157.285004  157.429993  157.429993  4015130
2022-05-02 09:31:00-04:00  157.220093  157.559998  157.010101  157.430405  157.430405   356736
2022-05-02 09:32:00-04:00  157.419998  158.024994  157.130096  157.779907  157.779907   472590
2022-05-02 09:33:00-04:00  157.779999  158.039993  157.309998  157.360001  157.360001   455743

像执行此过滤器

data[(data.index > "2022-05-02 09:30:00-04:00") & (data.index < "2022-05-02 09:35:00-04:00")]

一样

                                 Open        High         Low       Close   Adj Close  Volume
Datetime                                                                                     
2022-05-02 09:31:00-04:00  157.220093  157.559998  157.010101  157.430405  157.430405  356736
2022-05-02 09:32:00-04:00  157.419998  158.024994  157.130096  157.779907  157.779907  472590
2022-05-02 09:33:00-04:00  157.779999  158.039993  157.309998  157.360001  157.360001  455743
2022-05-02 09:34:00-04:00  157.350098  157.610001  156.630005  156.759995  156.759995  456566

[4 rows x 6 columns]

You can set a parameters for time interval in yahoo finance.

import yfinance as yf

data = yf.download("AAPL", start="2022-05-01", end="2022-05-03",  interval = "1m")

Data will be like

                                 Open        High         Low       Close   Adj Close   Volume
Datetime                                                                                      
2022-05-02 09:30:00-04:00  157.339905  157.429993  157.285004  157.429993  157.429993  4015130
2022-05-02 09:31:00-04:00  157.220093  157.559998  157.010101  157.430405  157.430405   356736
2022-05-02 09:32:00-04:00  157.419998  158.024994  157.130096  157.779907  157.779907   472590
2022-05-02 09:33:00-04:00  157.779999  158.039993  157.309998  157.360001  157.360001   455743

If you do this filter you can access the time interval with minute

data[(data.index > "2022-05-02 09:30:00-04:00") & (data.index < "2022-05-02 09:35:00-04:00")]

This filter output will be

                                 Open        High         Low       Close   Adj Close  Volume
Datetime                                                                                     
2022-05-02 09:31:00-04:00  157.220093  157.559998  157.010101  157.430405  157.430405  356736
2022-05-02 09:32:00-04:00  157.419998  158.024994  157.130096  157.779907  157.779907  472590
2022-05-02 09:33:00-04:00  157.779999  158.039993  157.309998  157.360001  157.360001  455743
2022-05-02 09:34:00-04:00  157.350098  157.610001  156.630005  156.759995  156.759995  456566

[4 rows x 6 columns]
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文