在多个文件1 x 1 pandas上执行代码
嗨,我有编写的代码,我写了一个文件夹中的.CSV文件,并添加一些必需的列。 现在,我想在路径文件夹1 x 1中的多个文件上执行此代码,并将每个代码保存为单独的DF。
我当前的代码如下,
import pandas as pd
import glob
import os
path = r'C:\Users\jake.jennings.BRONCO\Desktop\GPS Reports\Games\Inputs\2022-03-27 Vs
Cowboys\Test' # use your path
all_files = glob.glob(path + "/*.csv")
li = []
for filename in all_files:
frame = pd.read_csv(filename, index_col=None, skiprows=8)
li.append(frame)
frame = pd.concat(li, axis=0, ignore_index=True)
frame['filename'] = os.path.basename
#Add odometer change and turn all accel values to positive
import numpy as np
frame['OdChange'] = frame['Odometer'].diff()
frame['accelpos'] = frame['Acceleration'].abs()
#Add column with OdChange @ >5.5m/s
frame["new1"] = np.where(
(frame.Velocity >=5.5),
frame["OdChange"],
'0')
#Add column with accels/decels >2.5m.s.s for AccelDec/min
frame["new2"] = np.where(
(frame.accelpos >=2.5),
frame["accelpos"],
'0')
#Add column with accels/decels >2.5m.s.s for AccelDec/min
frame["new3"] = np.where(
(frame.Acceleration >=2.5),
'1',
'0')
s = frame['new3'].astype(int)
frame['new4'] = s.diff().fillna(s).eq(1).astype(int)
frame['new4']
#m/min peaks
frame['1minOD'] = frame['OdChange'].rolling(window=600, axis=0).sum()
#HSm/min peaks
frame['1minHS'] = frame['new1'].rolling(window=600, axis=0).sum()
#AccImpulse/min
frame['1minImp'] = frame['accelpos'].rolling(window=600, axis=0).mean() *60
#AccDec Peak Count
frame['1minAccCount'] = frame['new4'].rolling(window=600, axis=0).sum()
print (frame)
我不确定这是否是做我要做的事情的最佳方法。任何帮助将不胜感激!
Hi I have code I have written to read a .csv file in a folder and add some required columns.
I now want to perform this code on multiple files within the path folder 1 by 1 and save each as a separate df.
My current code is as follows
import pandas as pd
import glob
import os
path = r'C:\Users\jake.jennings.BRONCO\Desktop\GPS Reports\Games\Inputs\2022-03-27 Vs
Cowboys\Test' # use your path
all_files = glob.glob(path + "/*.csv")
li = []
for filename in all_files:
frame = pd.read_csv(filename, index_col=None, skiprows=8)
li.append(frame)
frame = pd.concat(li, axis=0, ignore_index=True)
frame['filename'] = os.path.basename
#Add odometer change and turn all accel values to positive
import numpy as np
frame['OdChange'] = frame['Odometer'].diff()
frame['accelpos'] = frame['Acceleration'].abs()
#Add column with OdChange @ >5.5m/s
frame["new1"] = np.where(
(frame.Velocity >=5.5),
frame["OdChange"],
'0')
#Add column with accels/decels >2.5m.s.s for AccelDec/min
frame["new2"] = np.where(
(frame.accelpos >=2.5),
frame["accelpos"],
'0')
#Add column with accels/decels >2.5m.s.s for AccelDec/min
frame["new3"] = np.where(
(frame.Acceleration >=2.5),
'1',
'0')
s = frame['new3'].astype(int)
frame['new4'] = s.diff().fillna(s).eq(1).astype(int)
frame['new4']
#m/min peaks
frame['1minOD'] = frame['OdChange'].rolling(window=600, axis=0).sum()
#HSm/min peaks
frame['1minHS'] = frame['new1'].rolling(window=600, axis=0).sum()
#AccImpulse/min
frame['1minImp'] = frame['accelpos'].rolling(window=600, axis=0).mean() *60
#AccDec Peak Count
frame['1minAccCount'] = frame['new4'].rolling(window=600, axis=0).sum()
print (frame)
I am not sure if this is even the best way to do what I am trying to do. Any help would be appreciated!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论