在Python中过滤数据集的首选方法是什么?

发布于 2025-01-30 01:46:45 字数 797 浏览 1 评论 0原文

滤波器数据集02 Telecom_usage.csv具有多种条件的

  • customercarecalls的值从偶数数字开始(2、4、6或8)
  • unanswerdCalls > gt; blockedCalls

第一种方法:

df_2 = pd.read_csv('02 telecom_usage.csv')
df_3 = df_2[(df_2['CustomerCareCalls'].str.contains('^2|^4|^6|^8')&
                 df_2['UnansweredCalls']>df_2['BlockedCalls'])]

第二种方法:

df_4 = pd.read_csv('02 telecom_usage.csv')
df_5 = df_4[df_4['CustomerCareCalls'].str.contains('^2|^4|^6|^8')]
    df_6 = df_5[df_5['UnansweredCalls']>df_5['BlockedCalls']]]

我尝试使用同一数据集运行两个查询,但是在

第一个过滤器结果中,从5000个数据中的第一个过滤器结果多达160个数据,而结果的结果是第二个过滤器是5000个数据中的558个数据,

在我通过Excel手动检查结果后,结果都符合多个条件的请求。

我想知道,为什么结果有所不同

Filter dataset 02 telecom_usage.csv with multiple condition

  • the value of CustomerCareCalls starting with even digits (2, 4, 6 or 8)
  • the value of UnansweredCalls > BlockedCalls

First way:

df_2 = pd.read_csv('02 telecom_usage.csv')
df_3 = df_2[(df_2['CustomerCareCalls'].str.contains('^2|^4|^6|^8')&
                 df_2['UnansweredCalls']>df_2['BlockedCalls'])]

second way:

df_4 = pd.read_csv('02 telecom_usage.csv')
df_5 = df_4[df_4['CustomerCareCalls'].str.contains('^2|^4|^6|^8')]
    df_6 = df_5[df_5['UnansweredCalls']>df_5['BlockedCalls']]]

I've tried to run both queries with same dataset, but there are different results in both

the first filter results as many as 160 data from 5000 data, while the results of the second filter are 558 data from 5000 data

after I checked the results manually via excel, the results both met the request for multiple conditions.

I want to know, why the result is difference

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文