在白色图像上识别线/点丢弃图案
我正在研究计算机视觉,并且有一个图像,如下所示:
我想识别组织上的黑线。我尝试了以下代码,
import cv2
img = cv2.imread('image.png')
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# do morphology gradient
kernel = cv2.getStructuringElement(cv2.MORPH_RECT , (3,3))
morph = cv2.morphologyEx(gray, cv2.MORPH_GRADIENT, kernel)
# apply gain
morph = cv2.multiply(morph, 10)
morph=cv2.resize(morph, (1000, 552))
imgStack = stackImages(0.5, ([img ], [morph]))
cv2.imshow('Stacked Images', imgStack)
cv2.waitKey(0)
上面的代码行给出了:
如我们所见,现有模式占上风,很难识别该行。如何丢弃真实的模式并识别无元。
我确实尝试了Stackoverflow中的其他答案,但是似乎没有任何作用
I'm working on computer vision and I have an image as shown below:
I want to identify the black line on the tissue. I have tried the following code
import cv2
img = cv2.imread('image.png')
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# do morphology gradient
kernel = cv2.getStructuringElement(cv2.MORPH_RECT , (3,3))
morph = cv2.morphologyEx(gray, cv2.MORPH_GRADIENT, kernel)
# apply gain
morph = cv2.multiply(morph, 10)
morph=cv2.resize(morph, (1000, 552))
imgStack = stackImages(0.5, ([img ], [morph]))
cv2.imshow('Stacked Images', imgStack)
cv2.waitKey(0)
the above line of code gives:
As we can see, the existing pattern prevails and it is difficult to identify the line. How to discard the true pattern and identify the anamolies.
I did try the other answers in stackoverflow, but nothing seem to work
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
关于评论,我建议应用全局阈值
cv2.threshold()
:代码:
结果:
注意到黑线突出显示,而没有其他图案受到影响。
In reference to the comments, I was suggesting to apply global threshold
cv2.threshold()
:Code:
Result:
Notice the black line highlighted while no other patterns are affected.