内容推荐系统没有深度学习
我正在探索推荐系统的领域,而我所能找到的是利用深度学习的技术。我不想在深度学习领域工作。因此,除了深度学习以外,还有其他内容推荐系统的方法吗?还是如果我不喜欢深度学习,我应该更改主题?我还想在推荐系统中进行图形,而不是基于协作的建议。任何资源都是有用的。
I am exploring the field of recommendation systems and all I can find are techniques utilizing deep learning. I would not like to work in the area of deep learning. Thus, are there other approaches to content recommendation systems other than deep learning? Or should I change the topic if I don't like deep learning? I would also like to work on graphs in the recommendation system but for content and not collaborative-based recommendations. Any resources are useful.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
深度学习建筑在许多实时用例中的表现非常出色,例如您自己的问题推荐说明系统。
如果您清楚地引用了问题,那么我建议一些古学,默认情况下,您会使用“基于顺序的古学,例如LSTM,GRU和Transformer。 -System-341806AE3B48“ rel =“ nofollow noreferrer”> Netflix推荐系统
Deep Learning architeture perform very well on many real time use cases, like your own problem recomendation saystem.
If you cited problems clearly, then i suggest some archetectecture, by default you go with "sequential based archetecture like LSTM, GRU and Transformer. Netflix Recommender system