运行时间融合变压器默认数据集形状错误
我在Google COLAB中运行了默认代码,该代码在 github 上下载。
克隆之后,当我运行步骤2时,无法测试培训。
python3 -m script_train_fixed_params volatility outputs yes
问题是下面的形状误差。
Computing best validation loss
Computing test loss
/usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py:2079: UserWarning: `Model.state_updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically.
updates=self.state_updates,
Traceback (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/content/drive/MyDrive/tft_tf2/script_train_fixed_params.py", line 239, in <module>
use_testing_mode=True) # Change to false to use original default params
File "/content/drive/MyDrive/tft_tf2/script_train_fixed_params.py", line 156, in main
targets = data_formatter.format_predictions(output_map["targets"])
File "/content/drive/MyDrive/tft_tf2/data_formatters/volatility.py", line 183, in format_predictions
output[col] = self._target_scaler.inverse_transform(predictions[col])
File "/usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_data.py", line 1022, in inverse_transform
force_all_finite="allow-nan",
File "/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py", line 773, in check_array
"if it contains a single sample.".format(array)
ValueError: Expected 2D array, got 1D array instead:
array=[-1.43120418 1.58885804 0.28558148 ... -1.50945972 -0.16713021
-0.57365613].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
我尝试修改代码,该代码是预测“ data_formatters/domatity.py”的dataFrame shpae,第183行,以格式_predictions',因为我猜那是问题出现的地方。),但我无法处理。
I ran default code of Temporal fusion transformer in google colab which downloaded at github.
After clone, when I ran the step 2, there's no way to test training.
python3 -m script_train_fixed_params volatility outputs yes
The problem is shape error in the below.
Computing best validation loss
Computing test loss
/usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py:2079: UserWarning: `Model.state_updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically.
updates=self.state_updates,
Traceback (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/content/drive/MyDrive/tft_tf2/script_train_fixed_params.py", line 239, in <module>
use_testing_mode=True) # Change to false to use original default params
File "/content/drive/MyDrive/tft_tf2/script_train_fixed_params.py", line 156, in main
targets = data_formatter.format_predictions(output_map["targets"])
File "/content/drive/MyDrive/tft_tf2/data_formatters/volatility.py", line 183, in format_predictions
output[col] = self._target_scaler.inverse_transform(predictions[col])
File "/usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_data.py", line 1022, in inverse_transform
force_all_finite="allow-nan",
File "/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py", line 773, in check_array
"if it contains a single sample.".format(array)
ValueError: Expected 2D array, got 1D array instead:
array=[-1.43120418 1.58885804 0.28558148 ... -1.50945972 -0.16713021
-0.57365613].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
I've tried to modify code which is predict dataframe shpae of 'data_formatters/volatility.py", line 183, in format_predictions' because I guessed that's where the problem arises.), but I can't handle that.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您必须
在
volatitlity.py
和第216行中更改第183行
。我想这应该与
波动率
相同。You have to change line
183 in
volatitlity.py
and line 216 in
electricity.py
Afterwards the example
electricity
works fine. And I guess this should be the same withvolatility
.