搜索数据结构具有直方图的自定义距离
我有k维功能的列表M。我想在此列表中找到查询功能A最近的项目A。功能比较不是直接基于常见的度量标准(例如欧几里得或对称的CHI2)。相反,特征A和特征B之间的比较如下:计算特征A和B'之间的距离(任何常见度量)。 B'是从B的圆形转移获得的。由于特征是K维的,因此我们获得了A和B之间的K-1距离,并且比较函数返回最低。
考虑到上面的比较功能,是否可以使用适当的算法或数据结构来优化NN搜索?
I have a list of k-dimensional features M. I want to find in this list the nearest item to a query feature A. Feature comparison is not directly based on a common metric (such as Euclidean or Symmetric Chi2). Rather, the comparison between feature A and feature B is done as follows : compute the distance (any common metric) between feature A and B'. B' is obtained from circular shifting of B. Since the features are k-dimensional, we obtain k-1 distances between A and B, and the comparison function returns the lowest.
Considering my comparison function above, is it possible to optimize the NN search with an appropriate algorithm or data structure ?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论