使用LSTM或其他方法的下一个值预测?

发布于 2025-01-29 09:04:46 字数 524 浏览 2 评论 0 原文

我有一个CSV文件,其中包含许多患者的健康测量数据。每个患者都有不同数量的测量值。 (有些患者经常出现,有些患者不会。)我正在尝试进行下一个价值预测模型,以预测患者的特定事件风险。 由于这些值都是时间顺序,因此我尝试使用LSTM进行预测。另外,我将所有患者的健康数据加入到一个长列中。 (请参阅附件)

我要喂入LSTM

,我的LSTM模型像库存一样生成库存结果价格预测。

类似我的结果

,但我想知道有更好的方法。我认为我当前连接所有患者数据的方法很奇怪。由于所有患者都有不同数量的测量值,因此我不确定是否可以并行将其喂入LSTM模型。也许我应该使用随机森林,因为每个患者的数据具有独特的分布?谢谢你!

I have a csv file with many patients' health measurement data. Each patient has a different number of measurements. (Some patients come frequently, some don't.) I am trying to do a next value prediction model to predict the patients' risk of specific incidences.
Since the values are all in time sequence, I've tried to use LSTM to make predictions. Also, I am concatenating all the patients' health data together into a long column. (Please see attachment)

what I am feeding into the LSTM

And my LSTM model generates results like stock price prediction.

kind of like my result

But I wonder if there are better ways. I think my current method of concatenating all my patients' data is strange. Since all the patients have a different number of measurements, I am not sure if can feed them to the LSTM model in parallel. Or maybe I should use random forest because each patient's data has unique distribution? Thank you!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

橙味迷妹 2025-02-05 09:04:46

Regarding the different lengths of your data, you can use Padding and Masking to make your data evenly lengthed (Description of Padding/Masking with Tensorflow). Predicting sequence based data using LSTMs is generally a good way, but I would advise you to look in GRUs instead of LSTMs and also into Transformer architectures, becuase by now they have many advantages to LSTMs.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文