R2Jags :: autojags()'函数不会收敛
我正在运行以下代码:
Data_Frame <- structure(list(Predictor_Variable = c(20.5273283761926, 11.4039835403673, 5.31423215288669, 12.5192134582903, 15.8487716107629, 7.16369490255602, 3.91227747895755, 8.90797802712768, 14.1797202872112, 4.82832778943703, 14.3634092528373, 18.3354590029921, 1.56595673179254, 15.27424925589, 2.01471757609397, 17.8340036130976, 24.4356162613258, 24.7056286665611, 8.86376699781977, 3.95776731311344, 1.70528281596489, 24.1929906886071, 7.84694050671533, 2.11047385819256, 24.8220994370058, 14.8339046107139, 19.9926545028575, 19.0412578289397, 4.78973534191027, 18.7796145037282, 19.3868586677127, 14.6739382355008, 20.0653701729607, 19.6233123773709, 7.19542927108705, 16.7649424169213, 9.41006114007905, 19.2996966594364, 21.0871973482426, 13.0715743871406, 17.3938042367809, 18.3959823509213, 9.12836091592908, 2.27788038901053, 10.3573848318774, 4.74680115585215, 9.6620995842386, 16.9264123018365, 11.6498990275431, 20.4607627529185, 24.9407043796964, 21.8109163164627, 11.807474057423, 0.530748104210943, 9.57337225554511, 16.5205421217252, 2.07126556197181, 14.2894889519084, 5.47687077778392, 17.44882510975, 14.0162174822763, 11.7680913361255, 1.04056366835721, 1.95715780719183, 21.3338757341262, 19.7388443630189, 18.9714497013483, 19.5131896412931, 14.1728786868043, 10.4211826983374, 0.625250476878136, 17.7159008861054, 17.5371950492263, 3.91660461900756, 20.3449436288793, 1.5704334480688, 13.397057261318, 20.7767494546715, 7.27919469354674, 23.8504881446715, 19.7164187382441, 5.95191353349946, 20.7321806927212, 10.5640658119228, 16.616114001954, 15.9614237083588, 3.23146634036675, 16.6699483001139, 14.8473161039874, 18.7451402307488, 3.54583212174475, 5.97735904157162, 8.23308551334776, 3.3043225936126, 9.93713270290755, 5.86233736248687, 2.55345033365302, 11.350765300449, 7.88409785600379, 16.5159953408875), Response_Variable = c(1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L)), class = "data.frame", row.names = c(NA, -100L))
sink("Generalised Logistic Function Model.txt")
cat("model {
# Priors
Intercept ~ dnorm(0, 0.001)
Slope ~ dnorm(0, 0.001)
Exponent ~ dlnorm(0, 1)
Sigma ~ dlnorm(0, 1)
Tau <- (1 / (Sigma ^ 2))
# Likelihood and Model Fit
for (i in 1:Number_of_Observations) {
Response[i] ~ dnorm(Mean[i], Tau)
Mean[i] <- ((1 + exp(-(Intercept + (Slope * Predictor[i])))) ^ (-Exponent))
Actual_Squared_Residual[i] <- ((Response[i] - Mean[i]) ^ 2)
Simulated_Response[i] ~ dbern(Mean[i])
Simulated_Squared_Residual[i] <- ((Simulated_Response[i] - Mean[i]) ^ 2)
}
Bayesian_p_Value <- step((sum((Simulated_Squared_Residual[]) ^ 2)) / (sum((Actual_Squared_Residual[]) ^ 2)) - 1)
}", fill = T)
sink()
Parameters <- c("Intercept", "Slope", "Exponent", "Bayesian_p_Value")
Data <- list(Predictor = Data_Frame$Predictor_Variable, Response = Data_Frame$Response_Variable, Number_of_Observations = 100)
Initial_Values <- function () {
list()
}
(Output_1 <- R2jags::jags(Data, Initial_Values, Parameters, "Generalised Logistic Function Model.txt", n.chains = 3, n.thin = 1, n.iter = 1000, n.burnin = 100, working.directory = getwd()))
运行此贝叶斯模型时,我将获得以下输出:
Inference for Bugs model at "Generalised Logistic Function Model.txt", fit using jags,
3 chains, each with 1000 iterations (first 100 discarded)
n.sims = 2700 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
Bayesian_p_Value 0.436 0.496 0.000 0.000 0.000 1.000 1.000 1.003 870
Exponent 1.122 1.002 0.149 0.431 0.811 1.412 3.900 1.189 16
Intercept -3.550 3.022 -11.786 -4.783 -2.785 -1.452 0.148 1.299 14
Slope 0.259 0.124 0.117 0.173 0.221 0.300 0.597 1.197 18
deviance 112.166 2.789 108.793 110.218 111.477 113.362 119.313 1.008 270
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 3.9 and DIC = 116.0
DIC is an estimate of expected predictive error (lower deviance is better).
然后尝试使用r2Jags :: autojags()
函数时,我会得到以下输出:
(Output_2 <- R2jags::autojags(Generalised_Logistic_Function_Model_Output, Rhat = 1.05))
Inference for Bugs model at "Generalised Logistic Function Model.txt", fit using jags,
3 chains, each with 1000 iterations (first 0 discarded)
n.sims = 3000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
Bayesian_p_Value 0.377 0.485 0.000 0.000 0.000 1.000 1.000 1.020 110
Exponent 0.889 0.831 0.037 0.339 0.670 1.186 3.195 1.757 6
Intercept -8.189 12.251 -47.264 -5.649 -3.372 -1.833 -0.135 1.831 6
Slope 0.473 0.560 0.126 0.191 0.241 0.350 2.130 1.871 6
deviance 112.520 2.919 108.919 110.427 111.930 113.896 119.283 1.103 28
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 4.0 and DIC = 116.5
DIC is an estimate of expected predictive error (lower deviance is better).
我是在这样的印象是,此功能将继续运行直到收敛为止(直到RHAT
达到1.1
)。事实并非如此 - 第二个模型实际上具有较高的RHAT
值。我已经尝试在autojags()
函数中使用RHAT
参数,但这没有帮助。我可以看到第二个模型没有丢弃任何初始迭代,但是由于它始于已经不错的模型(我使用jags()
函数的模型),所以它应该不很重要。到底是怎么回事?
I'm running the following code:
Data_Frame <- structure(list(Predictor_Variable = c(20.5273283761926, 11.4039835403673, 5.31423215288669, 12.5192134582903, 15.8487716107629, 7.16369490255602, 3.91227747895755, 8.90797802712768, 14.1797202872112, 4.82832778943703, 14.3634092528373, 18.3354590029921, 1.56595673179254, 15.27424925589, 2.01471757609397, 17.8340036130976, 24.4356162613258, 24.7056286665611, 8.86376699781977, 3.95776731311344, 1.70528281596489, 24.1929906886071, 7.84694050671533, 2.11047385819256, 24.8220994370058, 14.8339046107139, 19.9926545028575, 19.0412578289397, 4.78973534191027, 18.7796145037282, 19.3868586677127, 14.6739382355008, 20.0653701729607, 19.6233123773709, 7.19542927108705, 16.7649424169213, 9.41006114007905, 19.2996966594364, 21.0871973482426, 13.0715743871406, 17.3938042367809, 18.3959823509213, 9.12836091592908, 2.27788038901053, 10.3573848318774, 4.74680115585215, 9.6620995842386, 16.9264123018365, 11.6498990275431, 20.4607627529185, 24.9407043796964, 21.8109163164627, 11.807474057423, 0.530748104210943, 9.57337225554511, 16.5205421217252, 2.07126556197181, 14.2894889519084, 5.47687077778392, 17.44882510975, 14.0162174822763, 11.7680913361255, 1.04056366835721, 1.95715780719183, 21.3338757341262, 19.7388443630189, 18.9714497013483, 19.5131896412931, 14.1728786868043, 10.4211826983374, 0.625250476878136, 17.7159008861054, 17.5371950492263, 3.91660461900756, 20.3449436288793, 1.5704334480688, 13.397057261318, 20.7767494546715, 7.27919469354674, 23.8504881446715, 19.7164187382441, 5.95191353349946, 20.7321806927212, 10.5640658119228, 16.616114001954, 15.9614237083588, 3.23146634036675, 16.6699483001139, 14.8473161039874, 18.7451402307488, 3.54583212174475, 5.97735904157162, 8.23308551334776, 3.3043225936126, 9.93713270290755, 5.86233736248687, 2.55345033365302, 11.350765300449, 7.88409785600379, 16.5159953408875), Response_Variable = c(1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L)), class = "data.frame", row.names = c(NA, -100L))
sink("Generalised Logistic Function Model.txt")
cat("model {
# Priors
Intercept ~ dnorm(0, 0.001)
Slope ~ dnorm(0, 0.001)
Exponent ~ dlnorm(0, 1)
Sigma ~ dlnorm(0, 1)
Tau <- (1 / (Sigma ^ 2))
# Likelihood and Model Fit
for (i in 1:Number_of_Observations) {
Response[i] ~ dnorm(Mean[i], Tau)
Mean[i] <- ((1 + exp(-(Intercept + (Slope * Predictor[i])))) ^ (-Exponent))
Actual_Squared_Residual[i] <- ((Response[i] - Mean[i]) ^ 2)
Simulated_Response[i] ~ dbern(Mean[i])
Simulated_Squared_Residual[i] <- ((Simulated_Response[i] - Mean[i]) ^ 2)
}
Bayesian_p_Value <- step((sum((Simulated_Squared_Residual[]) ^ 2)) / (sum((Actual_Squared_Residual[]) ^ 2)) - 1)
}", fill = T)
sink()
Parameters <- c("Intercept", "Slope", "Exponent", "Bayesian_p_Value")
Data <- list(Predictor = Data_Frame$Predictor_Variable, Response = Data_Frame$Response_Variable, Number_of_Observations = 100)
Initial_Values <- function () {
list()
}
(Output_1 <- R2jags::jags(Data, Initial_Values, Parameters, "Generalised Logistic Function Model.txt", n.chains = 3, n.thin = 1, n.iter = 1000, n.burnin = 100, working.directory = getwd()))
When I run this Bayesian model, I get the following output:
Inference for Bugs model at "Generalised Logistic Function Model.txt", fit using jags,
3 chains, each with 1000 iterations (first 100 discarded)
n.sims = 2700 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
Bayesian_p_Value 0.436 0.496 0.000 0.000 0.000 1.000 1.000 1.003 870
Exponent 1.122 1.002 0.149 0.431 0.811 1.412 3.900 1.189 16
Intercept -3.550 3.022 -11.786 -4.783 -2.785 -1.452 0.148 1.299 14
Slope 0.259 0.124 0.117 0.173 0.221 0.300 0.597 1.197 18
deviance 112.166 2.789 108.793 110.218 111.477 113.362 119.313 1.008 270
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 3.9 and DIC = 116.0
DIC is an estimate of expected predictive error (lower deviance is better).
Then when I try using the R2jags::autojags()
function, I get the following output:
(Output_2 <- R2jags::autojags(Generalised_Logistic_Function_Model_Output, Rhat = 1.05))
Inference for Bugs model at "Generalised Logistic Function Model.txt", fit using jags,
3 chains, each with 1000 iterations (first 0 discarded)
n.sims = 3000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
Bayesian_p_Value 0.377 0.485 0.000 0.000 0.000 1.000 1.000 1.020 110
Exponent 0.889 0.831 0.037 0.339 0.670 1.186 3.195 1.757 6
Intercept -8.189 12.251 -47.264 -5.649 -3.372 -1.833 -0.135 1.831 6
Slope 0.473 0.560 0.126 0.191 0.241 0.350 2.130 1.871 6
deviance 112.520 2.919 108.919 110.427 111.930 113.896 119.283 1.103 28
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 4.0 and DIC = 116.5
DIC is an estimate of expected predictive error (lower deviance is better).
I was under the impression that this function would continue to run until it converges (until Rhat
reached 1.1
). This isn't the case - the second model actually has higher Rhat
values. I've tried playing around with the Rhat
argument in the autojags()
function but that hasn't helped. I can see that the second model didn't discard any of the initial iterations, but since it started with a model that was already decent (the model I got using the jags()
function), it shouldn't matter. What is going on?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这就是
autojags()
的代码。我们将仔细查看其工作原理:n.update
(默认为2),而至少一个R-hat值大于函数调用中指示的一个值,请执行操作在牙套中。count
计数器并再次检查收敛。将调用中的结果返回
autojags()
,您正在使用默认n.iter
(1000)和默认代码> n.update (2)。这意味着该函数最多将停止3000次迭代(第一次运行1000个,而对于2个更新中的每个更新中的每一个)都将停止。贝叶斯模型仅被保证会融合,因为无限距离的绘制数量。停止规则存在,因此您的计算机不会尝试在无限的时间内运行。还值得注意的是,检查不是按迭代进行迭代,而是n.Iter
-by-n.iter
块。This is what the code for
autojags()
looks like. We'll go through to see how it works:n.update
(which defaults to 2) and while at least one of the R-hat values is bigger than the one indicated in the function call, do what is in the braces.count
counter and check convergence again.In your call to
autojags()
, you're using the defaultn.iter
(1000) and defaultn.update
(2). This means that the function will stop at a maximum of 3000 iterations (1000 for the first run through and 1000 additional for each of the 2 updates) regardless of convergence. Bayesian models are only guaranteed to converge as the number of draws from the posterior approaches infinity. The stopping rules are there so your computer won't try to run for infinite time. It's also worth noting that the checking is not done iteration-by-iteration, butn.iter
-by-n.iter
chunks.