如何调整图像张量的大小
以下是我的代码,我将每个图像转换为pIL,然后将它们变成pytorch张量:
transform = transforms.Compose([transforms.PILToTensor()])
# choose the training and test datasets
train_data = os.listdir('data/training/')
testing_data = os.listdir('data/testing/')
train_tensors = []
test_tensors = []
for train_image in train_data:
img = Image.open('data/training/' + train_image)
train_tensors.append(transform(img))
for test_image in testing_data:
img = Image.open('data/testing/' + test_image)
test_tensors.append(transform(img))
# Print out some stats about the training and test data
print('Train data, number of images: ', len(train_data))
print('Test data, number of images: ', len(testing_data))
batch_size = 20
train_loader = DataLoader(train_tensors, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_tensors, batch_size=batch_size, shuffle=True)
# specify the image classes
classes = ['checked', 'unchecked', 'other']
# obtain one batch of training images
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy()
但是,我遇到了此错误:
RuntimeError: stack expects each tensor to be equal size, but got [4, 66, 268] at entry 0 and [4, 88, 160] at entry 1
这是因为我的图像在pil pil -&gt之前没有调整大小;张量。调整数据图像的正确方法是什么?
The following is my code where I'm converting every image to PIL and then turning them into Pytorch tensors:
transform = transforms.Compose([transforms.PILToTensor()])
# choose the training and test datasets
train_data = os.listdir('data/training/')
testing_data = os.listdir('data/testing/')
train_tensors = []
test_tensors = []
for train_image in train_data:
img = Image.open('data/training/' + train_image)
train_tensors.append(transform(img))
for test_image in testing_data:
img = Image.open('data/testing/' + test_image)
test_tensors.append(transform(img))
# Print out some stats about the training and test data
print('Train data, number of images: ', len(train_data))
print('Test data, number of images: ', len(testing_data))
batch_size = 20
train_loader = DataLoader(train_tensors, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_tensors, batch_size=batch_size, shuffle=True)
# specify the image classes
classes = ['checked', 'unchecked', 'other']
# obtain one batch of training images
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy()
However, I am getting this error:
RuntimeError: stack expects each tensor to be equal size, but got [4, 66, 268] at entry 0 and [4, 88, 160] at entry 1
This is because my images are not resized prior to PIL -> Tensor. What is the correct way of resizing data images?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
尝试使用 /code>,并且假设图像具有差异大小,则可以使用中心crop 或 RandomresizedCrop 取决于您的任务。检查完整列表 。
这是一个示例:
Try to utilize ImageFolder from
torchvision
, and assuming that images have diff size, you can use CenterCrop or RandomResizedCrop depending on your task. Check the Full list.Here is an example: