如何调整图像张量的大小

发布于 2025-01-29 05:23:17 字数 1303 浏览 3 评论 0原文

以下是我的代码,我将每个图像转换为pIL,然后将它们变成pytorch张量:

transform = transforms.Compose([transforms.PILToTensor()])

# choose the training and test datasets
train_data = os.listdir('data/training/')
testing_data = os.listdir('data/testing/')
train_tensors = []
test_tensors = []

for train_image in train_data:
    img = Image.open('data/training/' + train_image)
    train_tensors.append(transform(img))

for test_image in testing_data:
    img = Image.open('data/testing/' + test_image)
    test_tensors.append(transform(img))

# Print out some stats about the training and test data
print('Train data, number of images: ', len(train_data))
print('Test data, number of images: ', len(testing_data))

batch_size = 20

train_loader = DataLoader(train_tensors, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_tensors, batch_size=batch_size, shuffle=True)

# specify the image classes
classes = ['checked', 'unchecked', 'other']

# obtain one batch of training images
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy()

但是,我遇到了此错误:

RuntimeError: stack expects each tensor to be equal size, but got [4, 66, 268] at entry 0 and [4, 88, 160] at entry 1

这是因为我的图像在pil pil -&gt之前没有调整大小;张量。调整数据图像的正确方法是什么?

The following is my code where I'm converting every image to PIL and then turning them into Pytorch tensors:

transform = transforms.Compose([transforms.PILToTensor()])

# choose the training and test datasets
train_data = os.listdir('data/training/')
testing_data = os.listdir('data/testing/')
train_tensors = []
test_tensors = []

for train_image in train_data:
    img = Image.open('data/training/' + train_image)
    train_tensors.append(transform(img))

for test_image in testing_data:
    img = Image.open('data/testing/' + test_image)
    test_tensors.append(transform(img))

# Print out some stats about the training and test data
print('Train data, number of images: ', len(train_data))
print('Test data, number of images: ', len(testing_data))

batch_size = 20

train_loader = DataLoader(train_tensors, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_tensors, batch_size=batch_size, shuffle=True)

# specify the image classes
classes = ['checked', 'unchecked', 'other']

# obtain one batch of training images
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy()

However, I am getting this error:

RuntimeError: stack expects each tensor to be equal size, but got [4, 66, 268] at entry 0 and [4, 88, 160] at entry 1

This is because my images are not resized prior to PIL -> Tensor. What is the correct way of resizing data images?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

池予 2025-02-05 05:23:17

尝试使用 /code>,并且假设图像具有差异大小,则可以使用中心crop RandomresizedCrop 取决于您的任务。检查完整列表

这是一个示例:

train_dir = "data/training/"

train_dataset = datasets.ImageFolder(
    train_dir,
    transforms.Compose([
        transforms.RandomResizedCrop(img_size),  # image size int or tuple
        # Add more transforms here
        transforms.ToTensor(),  # convert to tensor at the end
]))

train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

Try to utilize ImageFolder from torchvision, and assuming that images have diff size, you can use CenterCrop or RandomResizedCrop depending on your task. Check the Full list.

Here is an example:

train_dir = "data/training/"

train_dataset = datasets.ImageFolder(
    train_dir,
    transforms.Compose([
        transforms.RandomResizedCrop(img_size),  # image size int or tuple
        # Add more transforms here
        transforms.ToTensor(),  # convert to tensor at the end
]))

train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文