关于使用八度代码将分段功能合并到ODE中

发布于 2025-01-29 03:26:04 字数 3528 浏览 2 评论 0原文

微分方程中m_v是一个分段函数

“

dindialial equication

” > dinactial方程src =“ https://i.sstatic.net/sfm55.png” alt =“ dindinial方程,其中m_v是一个零件函数”>

零件函数

“分段函数”

我使用Runge-Kutta 4(RK4)方法对八度的微分方程进行了编码。但是,由于我认为分段函数编码错误,因此结果并没有达到期望。谁能帮助正确编码分段函数以使用RK4方法求解微分方程?

  %vIRt code of the equations given in the manuscript 

function x = pieceWise(s)
  x = zeros (size (s));
  ind = s > 0;
  x(ind) = s(ind);
endfunction
% Defines variables
global tau_s taur_a beta_r I_ext J_inter J_intra Jr_a  I_0 lp; 

tau_s  = 10; taur_a = 83;  beta_r = 0.0175; Jr_a = 172.97; J_inter= 81; J_intra = 32.4; I_0= 0.29; I_ext = 20;
% step sizes
t0 = 0;
tfinal = 200;
h = 0.05;
n = ceil((tfinal-t0)/h)+1;

%initial conditions
s_r(1) = 0;
s_p(1) = 0.3556;
a_p(1) = 6.151;
a_r(1) = 0;
t(1) =0;
 
% functions handles
S_r = @(t,s_r,s_p,a_r,a_p) -(s_r/tau_s)+ beta_r*pieceWise(I_ext-J_intra*s_r-J_inter*s_p-a_r-I_0);
A_r = @(t,s_r,s_p,a_r,a_p) (-a_r+Jr_a*beta_r*pieceWise(I_ext-J_intra*s_r-J_inter*s_p-a_r-I_0))/taur_a;
S_p = @(t,s_r,s_p,a_p,a_r) -(s_p/tau_s)+ beta_r*pieceWise(I_ext-J_inter*s_r-J_intra*s_p-a_p-I_0);
A_p = @(t,s_r,s_p,a_p,a_r) (-a_p+Jr_a*beta_r*pieceWise((I_ext-J_inter*s_r-J_intra*s_p-a_p-I_0)))/taur_a;


for i = 1:n
  
  %updates time 
  t(i+1) = t(i)+h;
  
  %updates S_r, A_r, S_p and A_p
 k1S_r = S_r(t(i),     s_r(i),         s_p(i),   a_r(i), a_p(i));
 k1A_r = A_r(t(i),     s_r(i),         s_p(i),   a_r(i), a_p(i));
 k1S_p = S_p(t(i),     s_r(i),         s_p(i),   a_r(i), a_p(i));
 k1A_p = A_p(t(i),     s_r(i),         s_p(i),   a_r(i), a_p(i));
 
 k2S_r = S_r(t(i)+h/2, s_r(i)+h/2*k1S_r, s_p(i)+h/2*k1S_p, a_r(i)+h/2*k1A_r, a_p(i)+h/2*k1A_p);
 k2A_r = A_r(t(i)+h/2, s_r(i)+h/2*k1S_r, s_p(i)+h/2*k1S_p, a_r(i)+h/2*k1A_r, a_p(i)+h/2*k1A_p);
 k2S_p = S_p(t(i)+h/2, s_r(i)+h/2*k1S_r, s_p(i)+h/2*k1S_p, a_r(i)+h/2*k1A_r, a_p(i)+h/2*k1A_p);
 k2A_p = A_p(t(i)+h/2, s_r(i)+h/2*k1S_r, s_p(i)+h/2*k1S_p, a_r(i)+h/2*k1A_r, a_p(i)+h/2*k1A_p);
 
 k3S_r = S_r(t(i)+h/2, s_r(i)+h/2*k2S_r, s_p(i)+h/2*k2S_p, a_r(i)+h/2*k2A_r, a_p(i)+h/2*k2A_p);
 k3A_r = A_r(t(i)+h/2, s_r(i)+h/2*k2S_r, s_p(i)+h/2*k2S_p, a_r(i)+h/2*k2A_r, a_p(i)+h/2*k2A_p);
 k3S_p = S_p(t(i)+h/2, s_r(i)+h/2*k2S_r, s_p(i)+h/2*k2S_p, a_r(i)+h/2*k2A_r, a_p(i)+h/2*k2A_p);
 k3A_p = A_p(t(i)+h/2, s_r(i)+h/2*k2S_r, s_p(i)+h/2*k2S_p, a_r(i)+h/2*k2A_r, a_p(i)+h/2*k2A_p);
 
 k4S_r = S_r(t(i)+h, s_r(i)+h*k3S_r, s_p(i)+h*k3S_p, a_r(i)+h*k3A_r, a_p(i)+h*k3A_p);
 k4A_r = A_r(t(i)+h, s_r(i)+h*k3S_r, s_p(i)+h*k3S_p, a_r(i)+h*k3A_r, a_p(i)+h*k3A_p);
 k4S_p = S_p(t(i)+h, s_r(i)+h*k3S_r, s_p(i)+h*k3S_p, a_r(i)+h*k3A_r, a_p(i)+h*k3A_p);
 k4A_p = A_p(t(i)+h, s_r(i)+h*k3S_r, s_p(i)+h*k3S_p, a_r(i)+h*k3A_r, a_p(i)+h*k3A_p);
 
 s_r(i+1) = s_r(i)+h/6*(k1S_r +   2*k2S_r + 2*k3S_r +k4S_r);
 s_p(i+1) = s_p(i)+h/6*(k1S_p +   2*k2S_p + 2*k3S_p +k4S_p);
 a_r(i+1) = a_r(i)+h/6*(k1A_r +   2*k2A_r + 2*k3A_r +k4A_r);
 a_p(i+1) = a_p(i)+h/6*(k1A_p +   2*k2A_p + 2*k3A_p +k4A_p);
end

M_r = beta_r*pieceWise((I_ext-J_intra*s_r-J_inter*s_p-a_r-I_0));
M_p = beta_r*pieceWise((I_ext-J_inter*s_r-J_intra*s_p-a_p-I_0));

%plots
##plot(t,M_p)
##hold on
##plot(t,M_r)
##plot(t,s_r)
##hold on
##plot(t,s_p)
##hold on
##plot(t,a_p)
##hold on
##plot(t,a_r)
##title('a_p and a_r')
##legend('s_r', 's_p', 'position', 'best')
##xlim([0,200])

drawnow;

%print -deps rk4.eps

Differential equation where M_v is a piecewise function

differential equation where M_v is a piecewise function

Differential equation where M_v is a piecewise function

differential equation where M_v is a piecewise function

Piecewise function

piecewise function

I have coded the differential equation in Octave using the RUnge-Kutta 4 (RK4) method. However, the result is not as desired due to the piecewise function being coded incorrectly in my view. Could anyone help to code piecewise function correctly to solve differential equation using rk4 method?

  %vIRt code of the equations given in the manuscript 

function x = pieceWise(s)
  x = zeros (size (s));
  ind = s > 0;
  x(ind) = s(ind);
endfunction
% Defines variables
global tau_s taur_a beta_r I_ext J_inter J_intra Jr_a  I_0 lp; 

tau_s  = 10; taur_a = 83;  beta_r = 0.0175; Jr_a = 172.97; J_inter= 81; J_intra = 32.4; I_0= 0.29; I_ext = 20;
% step sizes
t0 = 0;
tfinal = 200;
h = 0.05;
n = ceil((tfinal-t0)/h)+1;

%initial conditions
s_r(1) = 0;
s_p(1) = 0.3556;
a_p(1) = 6.151;
a_r(1) = 0;
t(1) =0;
 
% functions handles
S_r = @(t,s_r,s_p,a_r,a_p) -(s_r/tau_s)+ beta_r*pieceWise(I_ext-J_intra*s_r-J_inter*s_p-a_r-I_0);
A_r = @(t,s_r,s_p,a_r,a_p) (-a_r+Jr_a*beta_r*pieceWise(I_ext-J_intra*s_r-J_inter*s_p-a_r-I_0))/taur_a;
S_p = @(t,s_r,s_p,a_p,a_r) -(s_p/tau_s)+ beta_r*pieceWise(I_ext-J_inter*s_r-J_intra*s_p-a_p-I_0);
A_p = @(t,s_r,s_p,a_p,a_r) (-a_p+Jr_a*beta_r*pieceWise((I_ext-J_inter*s_r-J_intra*s_p-a_p-I_0)))/taur_a;


for i = 1:n
  
  %updates time 
  t(i+1) = t(i)+h;
  
  %updates S_r, A_r, S_p and A_p
 k1S_r = S_r(t(i),     s_r(i),         s_p(i),   a_r(i), a_p(i));
 k1A_r = A_r(t(i),     s_r(i),         s_p(i),   a_r(i), a_p(i));
 k1S_p = S_p(t(i),     s_r(i),         s_p(i),   a_r(i), a_p(i));
 k1A_p = A_p(t(i),     s_r(i),         s_p(i),   a_r(i), a_p(i));
 
 k2S_r = S_r(t(i)+h/2, s_r(i)+h/2*k1S_r, s_p(i)+h/2*k1S_p, a_r(i)+h/2*k1A_r, a_p(i)+h/2*k1A_p);
 k2A_r = A_r(t(i)+h/2, s_r(i)+h/2*k1S_r, s_p(i)+h/2*k1S_p, a_r(i)+h/2*k1A_r, a_p(i)+h/2*k1A_p);
 k2S_p = S_p(t(i)+h/2, s_r(i)+h/2*k1S_r, s_p(i)+h/2*k1S_p, a_r(i)+h/2*k1A_r, a_p(i)+h/2*k1A_p);
 k2A_p = A_p(t(i)+h/2, s_r(i)+h/2*k1S_r, s_p(i)+h/2*k1S_p, a_r(i)+h/2*k1A_r, a_p(i)+h/2*k1A_p);
 
 k3S_r = S_r(t(i)+h/2, s_r(i)+h/2*k2S_r, s_p(i)+h/2*k2S_p, a_r(i)+h/2*k2A_r, a_p(i)+h/2*k2A_p);
 k3A_r = A_r(t(i)+h/2, s_r(i)+h/2*k2S_r, s_p(i)+h/2*k2S_p, a_r(i)+h/2*k2A_r, a_p(i)+h/2*k2A_p);
 k3S_p = S_p(t(i)+h/2, s_r(i)+h/2*k2S_r, s_p(i)+h/2*k2S_p, a_r(i)+h/2*k2A_r, a_p(i)+h/2*k2A_p);
 k3A_p = A_p(t(i)+h/2, s_r(i)+h/2*k2S_r, s_p(i)+h/2*k2S_p, a_r(i)+h/2*k2A_r, a_p(i)+h/2*k2A_p);
 
 k4S_r = S_r(t(i)+h, s_r(i)+h*k3S_r, s_p(i)+h*k3S_p, a_r(i)+h*k3A_r, a_p(i)+h*k3A_p);
 k4A_r = A_r(t(i)+h, s_r(i)+h*k3S_r, s_p(i)+h*k3S_p, a_r(i)+h*k3A_r, a_p(i)+h*k3A_p);
 k4S_p = S_p(t(i)+h, s_r(i)+h*k3S_r, s_p(i)+h*k3S_p, a_r(i)+h*k3A_r, a_p(i)+h*k3A_p);
 k4A_p = A_p(t(i)+h, s_r(i)+h*k3S_r, s_p(i)+h*k3S_p, a_r(i)+h*k3A_r, a_p(i)+h*k3A_p);
 
 s_r(i+1) = s_r(i)+h/6*(k1S_r +   2*k2S_r + 2*k3S_r +k4S_r);
 s_p(i+1) = s_p(i)+h/6*(k1S_p +   2*k2S_p + 2*k3S_p +k4S_p);
 a_r(i+1) = a_r(i)+h/6*(k1A_r +   2*k2A_r + 2*k3A_r +k4A_r);
 a_p(i+1) = a_p(i)+h/6*(k1A_p +   2*k2A_p + 2*k3A_p +k4A_p);
end

M_r = beta_r*pieceWise((I_ext-J_intra*s_r-J_inter*s_p-a_r-I_0));
M_p = beta_r*pieceWise((I_ext-J_inter*s_r-J_intra*s_p-a_p-I_0));

%plots
##plot(t,M_p)
##hold on
##plot(t,M_r)
##plot(t,s_r)
##hold on
##plot(t,s_p)
##hold on
##plot(t,a_p)
##hold on
##plot(t,a_r)
##title('a_p and a_r')
##legend('s_r', 's_p', 'position', 'best')
##xlim([0,200])

drawnow;

%print -deps rk4.eps

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文