绘图滞后效应,r中的DLNM软件包
我在R中使用DLNM软件包检查了与温度相关的死亡率。我想使用此代码在特定温度下解释滞后效应:#CrossBasis矩阵
cb< -crossbasis(数据$温度,滞后= 21,lag = 21, argvar = list(fun =“ ns”,knots = nterile(数据$温度,C(10,75,90)/100)/100,na.rm = t),arglag = list(knots = logknots(21,3)) )
#model模型< -glm(死亡率〜cb + ns(时间,df = 8*11) +(Dayoftheek),数据,family = quasipoisson)
cen< ----- 25.4预测的#center值
#predictions pred< -crosspred(cb,model,by = 0.1,cen = cen,cen,cumul = true)
如果我运行的pred摘要,我明白了:
预测:值:418以:25.4范围:-7.6,34.1滞后:0 21指数:是累积:是
模型:参数:20 类:GLM LM 链接:log
然后我尝试绘制绘制:
绘图(pred,slices',var = 1.8,col = 2,pch = 19,ylab =“ rr”,xlab =“ lag( days)”)
,
但我收到此错误消息:
lines.crosspred(pred,“ slices”,var = 1.8:'var'必须匹配预测的值。
我可以弄清楚我做错了什么。
I examine temperature related mortality using dlnm package in R. I want to interpret lag effect at specific temperatures using this code: #crossbasis matrix
cb<-crossbasis(data$Temperature,lag=21,argvar=list(fun="ns", knots=quantile(data$Temperature,c(10,75,90)/100,na.rm=T)), arglag=list(knots=logknots(21,3)))
#model model<-glm(mortality ~ cb + ns(Time,df=8*11) + (DayOfTheWeek), data, family=quasipoisson)
cen<-25.4 #centering value for predictions
#predictions pred<-crosspred(cb,model,by=0.1,cen=cen, cumul=TRUE)
If I run summary of pred I get this:
PREDICTIONS: values: 418 centered at: 25.4 range: -7.6 , 34.1 lag: 0 21 exponentiated: yes cumulative: yes
MODEL: parameters: 20
class: glm lm
link: log
Then I try to plot:
plot(pred, "slices", var=1.8, col=2, pch=19, ylab="RR", xlab="Lag (days)")
But I get this error message:
Error in lines.crosspred(pred, "slices", var = 1.8: 'var' must match values used for prediction.
I can't figure out what I am doing wrong. I would really appreciate any help.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我使用了“” var并工作了:
I used "" var and worked: